当前位置:初中试题 > 数学试题 > 相似图形性质 > 探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥...
题目
题型:不详难度:来源:
探究与发现:
如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°,则∠ABX+∠ACX=      °;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=140°,∠BG1C=77°,求∠A的度数.

答案
(1)∠BDC=∠A+∠B+∠C;(2)①40°;②90°;③70°.
解析

试题分析:(1)根据题意观察图形连接AD并延长至点F,由外角定理可知,一个三角形的外角等于与它不相邻的两个内角的和,则容易得到∠BDC=∠BDF+∠CDF;
(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值.
②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=(∠ADB+∠AEB)+∠A,易得答案.
③由(2)的方法,进而可得答案.
(1)连接AD并延长至点F,

由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;
且∠BDC=∠BDF+∠CDF及∠BAC=∠BAD+∠CAD;
相加可得∠BDC=∠A+∠B+∠C;
(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,
又因为∠A=50°,∠BXC=90°,
所以∠ABX+∠ACX=90°-50°=40°;
②由(1)的结论易得∠DBE=∠A+∠ADB+∠AEB,易得∠ADB+∠AEB=80°;
而∠DCE=(∠ADB+∠AEB)+∠A,
代入∠DAE=50°,∠DBE=130°,易得∠DCE=90°;
③∠BG1C=(∠ABD+∠ACD)+∠A,
∵∠BG1C=77°,
∴设∠A为x°,
∵∠ABD+∠ACD=140°-x°
(140-x)+x=77,
14-x+x=77,
x=70
∴∠A为70°.
核心考点
试题【探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥】;主要考察你对相似图形性质等知识点的理解。[详细]
举一反三
若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是(    )
A.60B.30C.20D.32

题型:不详难度:| 查看答案
如图,周长为,点都在边上,的平分线垂直于,垂足为平分线垂直于,垂足为,若,则的长为(     )
A.3   B.   C.  D.

题型:不详难度:| 查看答案
勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,,点都是矩形的边上,则矩形的面积为(    )
A.B.C.D.

题型:不详难度:| 查看答案
已知等腰三角形的底边长为,腰长为,则这个三角形的面积为         .
题型:不详难度:| 查看答案
如图,将边长为的正方形折叠,使点落在边中点处,点落在点处,折痕为,则的长为       .

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.