当前位置:初中试题 > 数学试题 > 相似图形 > 如图9-1,已知ABCD是边长为4的正方形,E是CD边上的一个动点,连接AE,AE的延长线交BC的延长线于点P,连接PD.作△ADE的外接圆⊙O.设DE = x...
题目
题型:不详难度:来源:
如图9-1,已知ABCD是边长为4的正方形,E是CD边上的一个动点,连接AE,AE的延长线交BC的延长线于点P,连接PD.作△ADE的外接圆⊙O.设DE = x,PC = y.
(1)求y与x之间的函数关系式;(2分)
(2)若PD是⊙O的切线,求x的值.(4分)
(3)过点D作DF⊥AE,垂足为H,交⊙O于点F,直线AF交BC于点G(如图9-2).若x=2,则sin∠BAG的值是_________.(2分)
     
答案
(1)解:∵四边形ABCD是正方形
∴AD//BC
∴∠ADE =∠PCE,∠DAE=∠CPE
∴△ADE∽△PCE ………………1分


……………………2分
(2)解:连接OD

∵∠ADE=90º,AE是⊙O的直径
∵PD是⊙O的切线,∴PD⊥OD
∴∠PDO+∠ODE="90º" ……………… 3分
∵∠PEC+∠CPE=90º,∠PEC=∠OED
∴∠OED+∠CPE=90º
∵OD=OE,∴∠OED=∠ODE
∴∠CPE=∠PDC …………………………………………………………4分
∵∠PCE=∠PCD
∴△PCE∽△DCP,∴…………………………………………5分
,即 
由(1)知,∴
解得(不合题意,舍去)
∴x=………………………………………………………………6分
(3)解:sin∠BAG=.…………………………………………………………8分
解析

核心考点
试题【如图9-1,已知ABCD是边长为4的正方形,E是CD边上的一个动点,连接AE,AE的延长线交BC的延长线于点P,连接PD.作△ADE的外接圆⊙O.设DE = x】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
(2011四川泸州,26,7分)如图,点P为等边△ABC外接圆劣弧BC上一点.
(1)求∠BPC的度数;
(2)求证:PA=PB+PC;
(3)设PA,BC交于点M,若AB=4,PC=2,求CM的长度.

题型:不详难度:| 查看答案
(11·贵港)如图所示,正方形OEFG和正方形ABCD是位似图形,点F的坐标
为(-1,1),点C的坐标为(-4,2),则这两个正方形位似中心的坐标是 _  ▲  
题型:不详难度:| 查看答案
(12分)已知,边长为5的正方形ABCO在如图所示的直角坐标系中,点
M(t,0)为x轴上一动点,过A作直线MC的垂线交y轴于点N.
(1)当t=2时,求直线MC的解析式;
(2)设△AMN的面积为S,当S=3时,求t的值;
(3)取点P(1,y),如果存在以M、N、C、P为顶点的四边形是等腰梯形,当t<0时,甲同学说:y与t应同时满足方程t2-yt-5=0和y2-2t2-10y+26=0;乙同学说:y与t应同时满足方程t2-yt-5=0和y2+8t-24=0,你认为谁的说法正确,并说明理由.再直接写出t>0时满足题意的一个点P的坐标.
题型:不详难度:| 查看答案
如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原
点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC对应边的比为1∶3,
则点C变换后对应的点的坐标为
A.(3,2)B.(-3,-2)或(3,2)
C.(2,D.(2,)或(-2,-

题型:不详难度:| 查看答案
(14分)如图,在□ABCD中,.点出发沿方向匀速运动,速度为;同时,线段出发沿方向匀速运动,速度为,交,连接.若设运动时间为(s)().解答下列问题:
(1)当为何值时,?并求出此时的长;
(2)试判断△的形状,并请说明理由.
(3)当时,
(ⅰ)在上述运动过程中,五边形的面积    ▲     (填序号)
①变大       ②变小       ③先变大,后变小       ④不变
(ⅱ)设的面积为,求出之间的函数关系式及的取值范围.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.