当前位置:初中试题 > 数学试题 > 相似图形 > (1)(3分)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD∶GC∶EB的结果(不必写计算过程);(2)(3分)将图(1)中的正方形...
题目
题型:不详难度:来源:
(1)(3分)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD∶GC∶EB的结果(不必写计算过程);
(2)(3分)将图(1)中的正方形AEGH绕点A旋转一定角度,如图(2),求HD∶GC∶EB;
(3)(2分)把图(2)中的正方形都换成矩形,如图(3),且已知DA∶AB=HA∶AE=m: n,此时HD∶GC∶EB的值与(2)小题的结果相比有变化吗?如果有变化,直接写出变化后的结果(不必写计算过程).
答案
(1)HD:GC:EB=1: :1(2)HD:GC:EB=1::1(3)有变化,HD:GC:EB=
解析
解:(1)HD:GC:EB=1: :1。
(2)连接AG、AC,
∵△ADC和△AHG都是等腰直角三角形,
∴AD:AC=AH:AG=1:,∠DAC=∠HAG=45°。
∴∠DAH=∠CAG。∴△DAH∽△CAG。
∴HD:GC=AD:AC=1:
∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE。
又∵AD=AB,AH=AE,∴△DAH≌△BAE(SAS)。∴HD=EB。
∴HD:GC:EB=1::1。
(3)有变化,HD:GC:EB=
(1)连接AG,
∵正方形AEGH的顶点E、H在正方形ABCD的边上,
∴∠GAE=∠CAB=45°,AE=AH,AB=AD。
∴A,G,C共线,AB-AE=AD-AH,∴HD=BE。
 
∴GC=AC-AG=AB-AE= (AB-AE)= BE。
∴HD:GC:EB=1::1。
(2)连接AG、AC,由△ADC和△AHG都是等腰直角三角形,易证得△DAH∽△CAG与△DAH≌△BAE,利用相似三角形的对应边成比例与正方形的性质,即可求得HD:GC:EB的值。
(3)连接AG、AC,
∵矩形AEGH的顶点E、H在矩形ABCD的边上,
DA:AB=HA:AE=m:n,
∴∠ADC=∠AHG=90°,∴△ADC∽△AHG。
∴AD:AC=AH:AG=,∠DAC=∠HAG。
∴∠DAH=∠CAG。∴△DAH∽△CAG。
∴HD:GC=AD:AC=
∵∠DAB=∠HAE=90°,∴∠DAH=∠BAE。
∵DA:AB=HA:AE=m:n,∴△ADH∽△ABE。∴DH:BE=AD:AB=m:n。
∴HD:GC:EB=
核心考点
试题【(1)(3分)如图(1),正方形AEGH的顶点E、H在正方形ABCD的边上,直接写出HD∶GC∶EB的结果(不必写计算过程);(2)(3分)将图(1)中的正方形】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
△ABC中的三条中位线围成的三角形周长是15cm,则△ABC的周长为【   】
A.60cmB.45cmC.30cmD.cm

题型:不详难度:| 查看答案
两个相似多边形的面积比是,其中较小多边形周长为36cm,则较大多边形周长为(   )
A.48cmB.54cmC.56cmD.64cm

题型:不详难度:| 查看答案
如图,△ABC中, BE⊥AC于E,AD⊥BC于D.求证:△CDE∽ △CAB
  
题型:不详难度:| 查看答案
浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于(  )
A.一根火柴的长度B.一支钢笔的长度C.一支铅笔的长度D.一根筷子的长度

题型:不详难度:| 查看答案
定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为Sn
①若△DEF的面积为1000,当n为何值时,3<Sn<4?
(请用计算器进行探索,要求至少写出二次的尝试估算过程)
②当n>1时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.