当前位置:初中试题 > 数学试题 > 相似图形 > 在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0.4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.(I )如图...
题目
题型:不详难度:来源:
在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0.4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.

(I )如图①,当旋转后点D恰好落在AB边上时,求点D的坐标;
(II)如图②,当旋转后满足BC∥x轴时,求α与β之间的数量关系:
(III)当旋转后满足∠AOD=β时,求直线CD的解析式(直接写出结果即可).
答案
(1)()   (2)α=2β   (3)y=x﹣4
解析

试题分析:(1)∵点A(3,0),B(0,4),得OA=3,OB=4,
∴在Rt△AOB中,由勾股定理,得AB==5,
根据题意,有DA=OA=3.
如图①,过点D作DM⊥x轴于点M,
则MD∥OB,
∴△ADM∽△ABO.有

∴OM=

∴点D的坐标为().
(2)如图②,由已知,得∠CAB=α,AC=AB,
∴∠ABC=∠ACB,
∴在△ABC中,
∴α=180°﹣2∠ABC,
∵BC∥x轴,得∠OBC=90°,
∴∠ABC=90°﹣∠ABO=90°﹣β,
∴α=2β;
(3)若顺时针旋转,如图,过点D作DE⊥OA于E,过点C作CF⊥OA于F,
∵∠AOD=∠ABO=β,
∴tan∠AOD==
设DE=3x,OE=4x,
则AE=4x﹣3,
在Rt△ADE中,AD2=AE2+DE2
∴9=9x2+(4x﹣3)2
∴x=
∴D(),
∴直线AD的解析式为:y=x﹣
∵直线CD与直线AD垂直,且过点D,
∴设y=﹣x+b,把D()代入得,=﹣×+b,
解得b=4,
∵互相垂直的两条直线的斜率的积等于﹣1,
∴直线CD的解析式为y=﹣
同理可得直线CD的另一个解析式为y=x﹣4.




点评:本题主要考查了相似三角形的判定和性质、勾股定理、待定系数法求一次函数解释式等知识点,本题关键在于结合图形找到相似三角形,求相关线段的长度和有关点的坐标.
核心考点
试题【在平面直角坐标系中,己知O为坐标原点,点A(3,0),B(0.4),以点A为旋转中心,把△ABO顺时针旋转,得△ACD.记旋转角为α.∠ABO为β.(I )如图】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
如图,在Rt△ABC中,∠B=90°,AB=1,BC=,以点C为圆心,CB为半径的弧交CA于点D;以点A为圆心,AD为半径的弧交AB于点E.
(1)求AE的长度;
(2)分别以点A、E为圆心,AB长为半径画弧,两弧交于点F(F与C在AB两侧),连接AF、EF,设EF交弧DE所在的圆于点G,连接AG,试猜想∠EAG的大小,并说明理由.
题型:不详难度:| 查看答案
某数学兴趣小组开展了一次活动,过程如下:
设∠BAC=θ(0°<θ<90°).现把小棒依次摆放在两射线之间,并使小棒两端分别落在射线AB,AC上.
活动一:
如图甲所示,从点A1开始,依次向右摆放小棒,使小棒与小棒在端点处互相垂直,A1A2为第1根小棒.
数学思考:
(1)小棒能无限摆下去吗?答: _________ .(填“能”或“不能”)
(2)设AA1=A1A2=A2A3=1.
①θ= _________ 度;
②若记小棒A2n1A2n的长度为an(n为正整数,如A1A2=a1,A3A4=a2,…)求出此时a2,a3的值,并直接写出an(用含n的式子表示).

活动二:
如图乙所示,从点A1开始,用等长的小棒依次向右摆放,其中A1A2为第1根小棒,且A1A2=AA1
数学思考:
(3)若已经摆放了3根小棒,θ1= _________ ,θ2= _________ ,θ3= _________ ;(用含θ的式子表示)
(4)若只能摆放4根小棒,求θ的范围.
题型:不详难度:| 查看答案
如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=0.8m,窗高CD=1.2m,并测得OE=0.8m,OF=3m,求围墙AB的高度.
题型:不详难度:| 查看答案
正方形ABCD中,E为AD上的一点(不与A、D点重合),AD=nAE,BE的垂直平分线分别交AB、CD于F、G两点,垂足为H.
(1)如图1,当n=2时,则= _________ 
(2)如图1,当n=2时,求的值;
(3)延长FG交BC的延长线于M(如图2),直接填空:当n= _________ 时,
题型:不详难度:| 查看答案
已知等边△ABC和Rt△DEF按如图所示的位置放置,点B,D重合,且点E、B(D)、C在同一条直线上.其中∠E=90°,∠EDF=30°,AB=DE=,现将△DEF沿直线BC以每秒个单位向右平移,直至E点与C点重合时停止运动,设运动时间为t秒.
(1)试求出在平移过程中,点F落在△ABC的边上时的t值;
(2)试求出在平移过程中△ABC和Rt△DEF重叠部分的面积s与t的函数关系式;
(3)当D与C重合时,点H为直线DF上一动点,现将△DBH绕点D顺时针旋转60°得到△ACK,则是否存在点H使得△BHK的面积为?若存在,试求出CH的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.