当前位置:初中试题 > 数学试题 > 相似图形 > 已知:点P为正方形ABCD内部一点,且∠BPC=90°,过点P的直线分别交边AB、边CD于点E、点F.(1)如图1,当PC=PB时,则S△PBE、S△PCF S...
题目
题型:不详难度:来源:
已知:点P为正方形ABCD内部一点,且∠BPC=90°,过点P的直线分别交边AB、边CD于点E、点F.
(1)如图1,当PC=PB时,则SPBE、SPCF SBPC之间的数量关系为 _________ 
(2)如图2,当PC=2PB时,求证:16SPBE+SPCF=4SBPG
(3)在(2)的条件下,Q为AD边上一点,且∠PQF=90°,连接BD,BD交QF于点N,若Sbpc=80,BE=6.求线段DN的长.
答案
(1)SPBE+SPCF=SBPC;     (2)见解析    (3)DN=2或3
解析

试题分析:(1)如图1所示:过点P作PI⊥BC于点I,
∵PB=PC,
∴PI∥BE∥CF,
∴PI是梯形BCFE的中位线,
∴PI=(BE+CF),
∵△PBC是等腰直角三角形,
∴PI=AB=CI,
∴SPBE+SPCF=BE•BI+CF•CI=BE×BC+CF•BC=BC(BE+CF)=BC•PI=SPBC
故答案为:SPBE+SPCF=SBPC
(2)如图2,过点P作PG⊥EF交BC于点G,∠EPG=90°,
∵∠BPC=90°,
∴∠EPB+∠BPG=90°,
∵∠BPG+∠CPG=90°,
∴∠EPB=∠CPG,
同理,∵∠EBP+∠PBC=90°,∠PBC+∠BCP=90°,
∴∠EBP=∠BCP,
∴△EPB∽△GPC,
∵PC=2PB,
=(2=
∴SGPC=4SEPB
同理可得SFPC=4SGPB
∵SPBG+SPGC=SBPC
∴16SPBE+SPFC=4SBPC
(3)如图3,设正方形的边长为a(a>0),
∵∠BPC=90°,PC=2PB,SBPC=80,
=80,解得a=20,
由(2)知,△EPB∽△GPC,
∴CG=2BE=12,
∴BG=8,
∴CF=16,DF=4,
过点P作PM∥AB交BC于点M.交AD于点H,过点P作PT⊥CD于T,
∵PM⊥BC,BC=20,SBPC=80,
∴PM=8,
∴PH=12,PT=16,FT=8,
∵∠PQF=90°,
∴由勾股定理得,(HQ2+HP2)+(DQ2+DF2)=PT2+TF2,即(16﹣DQ)2+122+(DQ2+42)=162+82,解得DQ=4或DQ=12,
当DQ=4时,
∵DQ=DF=4,∠PQF=90°,DN为∠QDF的角平分线,
∴DN=QD=2
当DQ=12时,过点N作NN1⊥QD于N1
∵∠QOF=90°,DN为∠QDF的角平分线,
∴∠QDN=45°,
∵NN1⊥AD,
∴NN1=N1D,△QDF∽△QN1N,
==,解得NN1=3,
∴DN===3
综上所述,DN=2或3

点评:本题考查的是相似形的综合题,涉及到相似三角形的判定与性质、正方形的性质、等腰三角形的性质及勾股定理,解答此题的关键是作出辅助线,构造出相似三角形,再利用相似三角形的性质进行解答.
核心考点
试题【已知:点P为正方形ABCD内部一点,且∠BPC=90°,过点P的直线分别交边AB、边CD于点E、点F.(1)如图1,当PC=PB时,则S△PBE、S△PCF S】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
如图,已知△ABC中,∠C=90°,AC=BC,AB=6,O是BC边上的中点,N是AB边上的点(不与端点重合),M是OB边上的点,且MN∥AO,延长CA与直线MN相交于点D,G点是AB延长线上的点,且BG=AN,连接MG,设AN=x,BM=y.
(1)求y关于x的函数关系式及其定义域;
(2)连接CN,当以DN为半径的⊙D和以MG为半径的⊙M外切时,求∠ACN的正切值;
(3)当△ADN与△MBG相似时,求AN的长.
题型:不详难度:| 查看答案
如图,已知△ABC中,∠ABC=135°,过B作AB的垂线交AC于点P,若,PB=2,求BC的长.

题型:不详难度:| 查看答案
将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”,例如圆的直径就是它的“面径”.已知等边三角形的边长为2,则它的“面径”长m的范围是          
题型:不详难度:| 查看答案
已知线段a=2,b=4,则线段a,b的比例中项为(    )
A.3B.C.D.

题型:不详难度:| 查看答案
下列阴影三角形分别在小正方形组成的网格中,则与左图中的三角形相似的是(    )
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.