当前位置:初中试题 > 数学试题 > 相似图形 > 如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB...
题目
题型:不详难度:来源:
如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.

(1)如图①,当时,求的值;
(2)如图②当DE平分∠CDB时,求证:AF=OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.
答案
解:(1)∵,∴
∵四边形ABCD是正方形,∴AD∥BC,AD=BC。∴△CEF∽△ADF。
。∴。∴
(2)证明:∵DE平分∠CDB,∴∠ODF=∠CDF。
又∵AC、BD是正方形ABCD的对角线.∴∠ADO=∠FCD=45°,∠AOD=90°,OA=OD。
又∵∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,∴∠ADF=∠AFD。∴AD=AF。
在Rt△AOD中,根据勾股定理得:,∴AF=OA。
(3)证明:连接OE,

∵点O是正方形ABCD的对角线AC、BD的交点,
∴点O是BD的中点。
又∵点E是BC的中点,∴OE是△BCD的中位线。
∴OE∥CD,OE=CD。∴△OFE∽△CFD。
。∴
又∵FG⊥BC,CD⊥BC,∴FG∥CD。∴△EGF∽△ECD。∴
在Rt△FGC中,∵∠GCF=45°,∴CG=GF。
又∵CD=BC,∴。∴。∴CG=BG。
解析

试题分析:(1)利用相似三角形的性质求得EF于DF的比值,依据△CEF和△CDF同高,则面积的比就是EF与DF的比值,据此即可求解。
(2)利用角之间的关系到证得∠ADF=∠AFD,可以证得AD=AF,在Rt△AOD中,利用勾股定理可以证得。
(3)连接OE,易证OE是△BCD的中位线,然后根据△FGC是等腰直角三角形,易证△EGF∽△ECD,利用相似三角形的对应边的比相等即可证得。 
核心考点
试题【如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.

(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.
题型:不详难度:| 查看答案
如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上)

(1)若△CEF与△ABC相似.
①当AC=BC=2时,AD的长为     
②当AC=3,BC=4时,AD的长为     
(2)当点D是AB的中点时,△CEF与△ABC相似吗?请说明理由.
题型:不详难度:| 查看答案
一天晚上,李明和张龙利用灯光下的影子来测量一路灯D的高度,如图,当李明走到点A处时,张龙测得李明直立身高AM与其影子长AE正好相等,接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m。已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m)

题型:不详难度:| 查看答案
如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则的值为【   】
A.1:3B.2:3C.1:4D.2:5

题型:不详难度:| 查看答案
如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=     ..

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.