当前位置:初中试题 > 数学试题 > 相似图形 > 如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,CE=5,M是BC边上的中点,动点P从点A出发,沿AB边以每秒1个单位长度的速度向终点B运动...
题目
题型:不详难度:来源:
如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,CE=5,M是BC边上的中点,动点P从点A出发,沿AB边以每秒1个单位长度的速度向终点B运动,连结PM.设动点P的运动时间是t秒.

(1)求线段AE的长;
(2)当△ADE与△PBM相似时,求t的值;
(3)如图2,连接EP,过点P作PH⊥AE于H.①当EP平分四边形PMEH的面积时,求t的值;②以PE为对称轴作线段BC的轴对称图形B′C′,当线段B′C′与线段AE有公共点时,写出t的取值范围(直接写出答案).
答案
(1)AE=20;(2)t=13或t=;(3)①t=≤t≤20.
解析

试题分析:(1)在直角三角形ADE中,已知AD=12,DE=16,根据勾股定理可求出AE的值;(2)分两种情况讨论:一、当∠DAE=∠PMB时,根据相似三角形的性质:相似三角形的对应边的比相等.即可求出t的值;二、当∠DAE=∠MPB时,由相似三角形的性质即可求出t的值.(3)①根据题意得出SEHP=SEMP,求出t的两个值,再根据t的取值范围即可求出t的值;②根据PE为对称轴作线段BC的轴对称图形B′C′,当点B′在线段AE上时,如图3所示,由勾股定理求得EB′=13,AB′=7,根据题意可证得△AB′N与△ADE相似,根据相似三角形对应边的比相等,可求出AN=5.6,NB′=4.2,则PN=t-5.6,PB′=21-t,再根据勾股定理可求出t的值为.当点C′在线段AE上时,如图4,则AC′=20-5=15,可证△AC′F与△ADE相似,可分别求出AF,C′F的值,在△PFB′中,利用勾股定理可求PF的值,从而求出AP的值,即求出t的值,所以有≤t≤20.
 
试题解析:(1)∵ABCD是矩形,∴∠D=90°,∴AE2=AD2+DE2,∵AD=12,DE=16,∴AE=20;
(2)∵∠D=∠B=90°,∴△ADE与△PBM相似时,有两种可能;
当∠DAE=∠PMB时,有=,即=,解得:t=13;
当∠DAE=∠MPB时,有=,即=,解得t=
(3)①由题意得:SEHP=SEMP
××(20﹣t)=×12×(5+21﹣t)﹣×6×(21﹣t)﹣×6×5,
解得:t=
∵0<t<21,
∴t=
②根据题意得:≤t≤20.
核心考点
试题【如图1,矩形ABCD中,AB=21,AD=12,E是CD边上的一点,CE=5,M是BC边上的中点,动点P从点A出发,沿AB边以每秒1个单位长度的速度向终点B运动】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
如图2,已知AD是△ABC的中线,AE=EF=FC,下面给出三个关系式:

①AG:AD=1:2; ②GE:BE=1:3 ③BE:BG=4:3,
其中正确的是(       )
A.①②B.①③C.②③D.①②③

题型:不详难度:| 查看答案
如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,横杆AB与CD的距离是3m,则P到AB的距离是      m.

题型:不详难度:| 查看答案
如图,正方形ABCD中,点N为AB的中点,连接DN并延长交CB的延长线于点P,连接AC交DN于点M,若PN=3,则DM的长为______________ 。

题型:不详难度:| 查看答案
在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N.
(1)如图1,当点M在AB边上时,连接BN

①试说明:
②若∠ABC=60°,AM=4,求点M到AD的距离.
(2)如图2,若∠ABC=90°,记点M运动所经过的路程为x(6≤x≤12).试问:x为何值时,△ADN为等腰三角形.

题型:不详难度:| 查看答案
(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE。

(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由。
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.