当前位置:初中试题 > 数学试题 > 相似图形 > 如图,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,垂足为D.(1)若AD=9,BC=16,求BD的长;(2)求证:AB2•BC=CD2•AD....
题目
题型:不详难度:来源:
如图,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,垂足为D.

(1)若AD=9,BC=16,求BD的长;
(2)求证:AB2•BC=CD2•AD.
答案
(1)12,(2)证明见解析.
解析

试题分析:(1)先根据平行线的性质得出∠ADB=∠DBC,再由∠A=90°,BD⊥CD可知∠A=∠BDC=90°,故可得出△ABD∽△DCB,由相似三角形的对应边成比例即可得出结论;
(2)由(1)可知△ABD∽△DCB,再根据相似三角形面积的比等于相似比的平方即可得出结论.
试题解析::(1)∵AD∥BC,
∴∠ADB=∠DBC,
∵∠A=90°,BD⊥CD,
∴∠A=∠BDC=90°,
∴△ABD∽△DCB,

即BD2=AD•BC=9×16=144,
∴BD=12;
(2)∵由(1)可知△ABD∽△DCB,△ABD与△DCB均为直角三角形,

∴AB2•BC=CD2•AD.
考点:1.相似三角形的判定与性质;2.直角梯形.
核心考点
试题【如图,在直角梯形ABCD中,AD∥BC,∠A=90°,BD⊥CD,垂足为D.(1)若AD=9,BC=16,求BD的长;(2)求证:AB2•BC=CD2•AD.】;主要考察你对相似图形等知识点的理解。[详细]
举一反三
已知点P是边长为4的正方形ABCD内一点,且PB="3" , BF⊥BP,垂足是点B, 若在射线BF上找一点M,使以点B, M, C为顶点的三角形与△ABP相似,则BM为___________.

题型:不详难度:| 查看答案
把一个三角形分割成几个小正三角形,有两种简单的“基本分割法”.
基本分割法1:如图①,把一个正三角形分割成4个小正三角形,即在原来1个正三角形的基础上增加了3个正三角形.
基本分割法2:如图②,把一个正三角形分割成6个小正三角形,即在原来1个正三角形的基础上增加了5个正三角形.

请你运用上述两种“基本分割法”,解决下列问题:
(1)把图③的正三角形分割成9个小正三角形;
(2)把图④的正三角形分割成10个小正三角形;
(3)把图⑤的正三角形分割成11个小正三角形;
(4)把图⑥的正三角形分割成12个小正三角形.

题型:不详难度:| 查看答案
按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是(  )
①△ABC与△DEF是位似图形      ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2  ④△ABC与△DEF的面积比为4:1.

A.1      B.2     C. 3      D. 4
题型:不详难度:| 查看答案
如图,E是▱ABCD的边CD上一点,连接AE并延长交BC的延长线于点F,且AD=4,=,则CF的长为 _________ 

题型:不详难度:| 查看答案
如图,一张矩形报纸ABCD的长AB=a,宽BC=b,E,F分别是AB,CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽的比等于矩形ABCD的长与宽的比,则a:b等于(           )
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.