当前位置:初中试题 > 数学试题 > 勾股定理逆定理 > 已知:a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+...
题目
题型:不详难度:来源:
已知:a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
∵a2c2-b2c2=a4-b4,①
∴c2(a2-b2)=(a2+b2)(a2-b2).②
∴c2=a2+b2.③
∴△ABC是直角三角形.
问:
(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:______;
(2)错误的原因为______;
(3)本题正确的解题过程:
答案
(1)③
(2)除式可能为零;
(3)∵a2c2-b2c2=a4-b4
∴c2(a2-b2)=(a2+b2)(a2-b2),
∴a2-b2=0或c2=a2+b2
当a2-b2=0时,a=b;
当c2=a2+b2时,∠C=90°,
∴△ABC是等腰三角形或直角三角形.
故答案是③,除式可能为零.
核心考点
试题【已知:a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+】;主要考察你对勾股定理逆定理等知识点的理解。[详细]
举一反三
已知直角坐标平面内的△ABC三个顶点A、B、C的坐标分别为(4,3)、(1,2)、(3,-4),则△ABC的形状是______.
题型:不详难度:| 查看答案
若△ABC的三边长为a,b,c,根据下列条件判断△ABC的形状.
(1)a2+b2+c2+200=12a+16b+20c
(2)a3-a2b+ab2-ac2+bc2-b3=0.
题型:不详难度:| 查看答案
有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长为______.
题型:不详难度:| 查看答案
阅读以下解题过程:
已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
错∵a2c2-b2c2=a4-b4…(1),
∴c2(a2-b2)=(a2-b2)(a2+b2)…(2),
∴c2=a2+b2…(3)
问:
(1)上述解题过程,从哪一步开始发现错误请写出该步的代号______.
(2)错误的原因是______.
(3)本题正确的结论是______.
题型:不详难度:| 查看答案
若△ABC中,(b-a)(b+a)=c2,则∠B=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.