当前位置:初中试题 > 数学试题 > 正方形 > 边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,作PE⊥PB交直线CD于点E,设PA=x,S△PCE=y,...
题目
题型:不详难度:来源:
边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,作PE⊥PB交直线CD于点E,设PA=x,S△PCE=y,
(1)求证:DF=EF;
(2)当点P在线段AO上时,求y关于x的函数关系式及自变量x的取值范围;
(3)在点P的运动过程中,△PEC能否为等腰三角形?如果能够,请直接写出PA的长;如果不能,请简单说明理由.
答案
(1)证明:延长FP交AB于G,
∵四边形ABCD是正方形,
∴∠BAD=∠D=90°(正方形的四个内角都是直角)
∵PF⊥CD,
∴∠DFG=90°,
∴四边形AGFD是矩形(有三个角是直角的四边形是矩形),
∴DF=AG,∠AGF=90°,
∵AC是正方形ABCD的对角线,
∴∠BAC=45°,
∴△AGP是等腰直角三角形,即AG=GP,
∴GP=DF,
同理CF=PF=BG,
∵∠GPB+∠FPE=90°,∠GPB+∠GBP=90°,
∴∠GBP=∠FPE,
在Rt△GBP和Rt△FPE中





∠GBP=∠FPE
BG=PF
∠BGP=∠PFE

∴Rt△GBP≌Rt△FPE(ASA),
∴GP=EF,
即DF=EF.

(2)在Rt△AGP中,∵AP=x,
∴AG=GP=


2
2
x,
DF=EF=


2
2
x,
即DE=


2
x,
∴CE=4-


2
x,
∵PF=4-


2
2
x,
∴y=
1
2
(4-


2
x)(4-


2
2
x)=
1
2
x2-3


2
x+8,
定义域:0≤x≤2


2

答:y关于x的函数关系式是y=
1
2
x2-3


2
x+8,自变量x的取值范围是0≤x≤2


2


(3)能够,
∵∠CEP≥90°,
若△PEC为等腰三角形,只能是∠CPE=∠ECP=45°,
则PE⊥CE,
∵PE⊥PB,
∴BPCD,
∴BPBA
于是P与AB共线,又P在AC上,
∴A与P共点,
此时,PA=0;

作PE⊥PB交直线CD于点E,
当PA=4时,E在DC的延长线上,PC=CE,
△PEC为等腰三角形,
此时PA=4.
核心考点
试题【边长为4的正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F,作PE⊥PB交直线CD于点E,设PA=x,S△PCE=y,】;主要考察你对正方形等知识点的理解。[详细]
举一反三
如图,以正方形ABCD的一边CD为边,向形外作等边三角形CDE,连接AC、AE,则下列结论错误的是(  )
A.∠ACE=105°
B.∠ADE=150°
C.∠DEA=15°
D.△EFC的面积大于△ACF的面积

题型:不详难度:| 查看答案
如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.
题型:不详难度:| 查看答案
在□ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连接EG、GF、FH、HE.

(1)如图①,试判断四边形EGFH的形状,并说明理由;
(2)如图②,当EF⊥GH时,四边形EGFH的形状是______;
(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是______;
(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.
题型:不详难度:| 查看答案
如图,点M、E分别在正方形ABCD的边AB、BC上,以M为圆心,ME的长为半径画弧,交AD边于点F.当
∠EMF=90°时,求证:AF=BM.
题型:不详难度:| 查看答案
已知正方形ABCD的边长为12,E,F分别是AD,CD上的点,且EF=10,∠EBF=45°,则AE的长为______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.