当前位置:初中试题 > 数学试题 > 正方形 > 如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC...
题目
题型:不详难度:来源:
如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为______,数量关系为______.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.
答案
(1)①CF⊥BD,CF=BD…(2分)
故答案为:垂直、相等.
②成立,理由如下:…(3分)
∵∠FAD=∠BAC=90°
∴∠BAD=∠CAF
在△BAD与△CAF中,





BA=CA
∠BAD=∠CAF
AD=AF

∴△BAD≌△CAF(SAS)(5分)
∴CF=BD,∠ACF=∠ACB=45°,
∴∠BCF=90°
∴CF⊥BD…(7分)

(2)当∠ACB=45°时可得CF⊥BC,理由如下:…(8分)
过点A作AC的垂线与CB所在直线交于G…(9分)
则∵∠ACB=45°
∴AG=AC,∠AGC=∠ACG=45°
∵AG=AC,AD=AF,
∵∠GAD=∠GAC-∠DAC=90°-∠DAC,∠FAC=∠FAD-∠DAC=90°-∠DAC,
∴∠GAD=∠FAC,
∴△GAD≌△CAF(SAS)…(10分)
∴∠ACF=∠AGD=45°
∴∠GCF=∠GCA+∠ACF=90°
∴CF⊥BC…(12分)
核心考点
试题【如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:(1)如果AB=AC,∠BAC】;主要考察你对正方形等知识点的理解。[详细]
举一反三
如图,F为正方形ABCD的对角线AC上一点,FE⊥AD于点E,M为CF的中点.
(1)求证:MB=MD;
(2)求证:ME=MB.
题型:不详难度:| 查看答案
如图,在四边形ABCD中,点E是线段AD上的任意一点(E与A,D不重合),G,F,H分别是BE,BC,CE的中点.
(1)证明:四边形EGFH是平行四边形;
(2)在(1)的条件下,若EF⊥BC,且EF=
1
2
BC,证明:平行四边形EGFH是正方形.
题型:不详难度:| 查看答案
在四边形ABCD中,若给出四个条件:①AB=BC,②∠BAD=90°,③AC⊥BD,④AC=BD且互相平分.其中选择两个可推出四边形ABCD是正方形,你认为这两个条件是______.(填序号,只需填一组)
题型:不详难度:| 查看答案
如图,已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2;以此下去…,则正方形A4B4C4D4的面积为______.
题型:不详难度:| 查看答案
请在6×6的正方形网格中,各画出一个不同类型的特殊平行四边形,并分别求出所画特殊平行四边形的面积.
(1)图1:AB为特殊平行四边形的一条边;
(2)图2:AB为特殊平行四边形的一条对角线.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.