当前位置:初中试题 > 数学试题 > 正方形 > 如图,在正方形ABCD中,对角线AC、BD交于点D,CE平分∠ACD,分别交AD、BD于E、G,EF∥AC交CD于F,连接OE下列结论:①EF=AE,②∠AOE...
题目
题型:不详难度:来源:
如图,在正方形ABCD中,对角线AC、BD交于点D,CE平分∠ACD,分别交AD、BD于E、G,EFAC交CD于F,连接OE下列结论:①EF=AE,②∠AOE=∠AEO,③OG=
1
2
AE
,④S△ACE=2S△DCE⑤AB=(


2
+1)DG
.其中正确的是(  )
A.①③⑤B.①②④C.①③④D.②③⑤

答案
∵CE平分∠ACD,EFAC,
∴△CFE是等腰三角形,
∴CF=EF,
∵CF=AE,
∴EF=AE.(故①正确).
∵EF≠AO,
∴AE≠AO.(故②错误).

作CA的垂线MA和CE的延长线交于M点,
∵GO=
1
2
MA,
∵CM为∠ACD的平分线,
∴∠DCE=∠ACM,又∠CDE=∠CAM=90°,
∴∠CED=∠M,又∠CED=∠AEM,
∴∠AEM=∠M,
∴MA=AE,
∴GO=
1
2
AE,(故③正确).

设GO=x,
∵GO=
1
2
AE=
1
2
EF,
∴EF=AE=2x,
∴DN=NE=
1
2
EF=x,
∴DE=


2
x,
∵EFAC,
EF
AC
=
DE
AD

∴AC=2(


2
+1)x,
∴OD=OA=(


2
+1)x,
∴DG=DO-OG=


2
x,
∵AB=DA=DE+AE=


2
x+2x,
∴AB=(


2
+1)DG.(故⑤正确).
AE
DE
=


2

∴S△ACE=


2
S△DCE
(故④错误).
故正确的为①③⑤.
故选A.
核心考点
试题【如图,在正方形ABCD中,对角线AC、BD交于点D,CE平分∠ACD,分别交AD、BD于E、G,EF∥AC交CD于F,连接OE下列结论:①EF=AE,②∠AOE】;主要考察你对正方形等知识点的理解。[详细]
举一反三
△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,
(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲、乙两种剪法,哪种剪法所得的正方形面积大?请说明理由.
(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为s1;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为s2(如图2),则s2=______;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为s3,继续操作下去…,则第10次剪取时,s10=______;
(3)求第10次剪取后,余下的所有小三角形的面积之和.
题型:不详难度:| 查看答案
在四边形ABCD中,对角线AC,BD交于点O,点P是在线段BC上任意一点(与点B不重合),∠BPE=
1
2
∠BCA,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.
(1)若ABCD为正方形,
①如图(1),当点P与点C重合时.△BOG是否可由△POE通过某种图形变换得到?证明你的结论;
②结合图(2)求
BF
PE
的值;
(2)如图(3),若ABCD为菱形,记∠BCA=α,请探究并直接写出
BF
PE
的值.(用含α的式子表示)
题型:不详难度:| 查看答案
如图1,在正方形ABCD中,对角线AC与BD相交于点E,AF平分∠BAC,交BD于点F.
(1)求证:EF+
1
2
AC=AB;
(2)点C1从点C出发,沿着线段CB向点B运动(不与点B重合),同时点A1从点A出发,沿着BA的延长线运动,点C1与A1的运动速度相同,当动点C1停止运动时,另一动点A1也随之停止运动.如图2,A1F1平分∠BA1C1,交BD于点F1,过点F1作F1E1⊥A1C1,垂足为E1,请猜想E1F1
1
2
A1C1与AB三者之间的数量关系,并证明你的猜想;
(3)在(2)的条件下,当A1E1=3,C1E1=2时,求BD的长.
题型:不详难度:| 查看答案
(1)填空:如图1,在正方形PQRS中,已知点M、N分别在边QR、RS上,且QM=RN,连接PN、SM相交于点O,则∠POM=______度;
(2)如图2,在等腰梯形ABCD中,已知ABCD,BC=CD,∠ABC=60度.以此为部分条件,构造一个与上述命题类似的正确命题并加以证明.
题型:不详难度:| 查看答案
如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.
(1)求证:AF-BF=EF;
(2)四边形EFGH是什么四边形?并证明;
(3)若AB=2,BP=1,求四边形EFGH的面积.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.