当前位置:初中试题 > 数学试题 > 正方形 > 正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.求证:①△ABG≌△AFG;...
题目
题型:不详难度:来源:
正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.求证:
①△ABG≌△AFG;
②BG=GC.
答案
证明:(1)∵△ADE沿AE对折至△AFE,
∴△ADE≌△AFE,
∴AD=AF,∠D=∠AFE=90°,
又∵ABCD为正方形,
∴AD=AB,∠D=∠B=90°,
∴AB=AF,∠B=∠AFG=∠D=90°,
在△ABG和△AFG中,





AG=AG
AB=AF

∴△ABG≌△AFG(HL);

(2)设BG=x,
∵正方形ABCD中,AB=6,
∴AB=BC=CD=6,
∴CG=6-x,
又∵CD=3DE,
∴CG=2,CE=4,
又∵△ADE≌△AFE,
∴EF=DE=2,
又∵△ABG≌△AFG,
∴BG=GF=x,
∴EG=2+x,
∴在Rt△GCE中,GE2=GC2+EC2
(2+x)2=(6-x)2+42
∴x=3,
∴BG=3,CG=3,
∴G为BC中点.
核心考点
试题【正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.求证:①△ABG≌△AFG;】;主要考察你对正方形等知识点的理解。[详细]
举一反三
如图,四边形ABCD是正方形,点E、F分别是AB和AD延长线上的点,BE=DF.
(1)求证:△CEF是等腰直角三角形;
(2)若S△CEF=
17
2
,①当AF=5DF时,求正方形ABCD的边长;②通过探究,直接写出当AB=kDF(k>1)时,正方形ABCD的面积.
题型:不详难度:| 查看答案
如图,四边形ABCD是正方形,△ABE是等边三角形,则∠AED=______度.
题型:不详难度:| 查看答案
如图,是一块在电脑屏幕上出现的矩形色块图,由6个不同颜色的正方形组成,已知中间最小的一个正方形的边长为1,那么这个矩形色块图的面积为(  )
A.142B.143C.144D.145

题型:不详难度:| 查看答案
如图,E为正方形ABCD对角线AC上一点,若AE=BC,则∠BED等于(  )
A.115°B.125°C.135°D.150°

题型:不详难度:| 查看答案
如图,正方形ABCD中,点E是AD的中点,点P是AB上的动点,PE的延长线与CD的延长线交于点Q,过点E作EF⊥PQ交BC的延长线于点F.给出下列结论:
①△APE≌△DQE;
②点P在AB上总存在某个位置,使得△PQF为等边三角形;
③若tan∠AEP=
2
3
,则
S△PBF
S△APE
=
14
3

其中正确的是(  )
A.①B.①③C.②③D.①②③

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.