当前位置:初中试题 > 数学试题 > 平行四边形性质 > (11·贺州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_  ▲  ....
题目
题型:不详难度:来源:
(11·贺州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,
折痕为EF.若BF=4,FC=2,则∠DEF的度数是_  ▲  
答案
60º
解析
根据折叠的性质得到DF=BF=4,∠BFE=∠DFE,在Rt△DFC中,根据含30°的直角三角形三边的关系得到∠FDC=30°,则∠DFC=60°,所以有∠BFE=∠DFE=(180°-60°)÷2,然后利用两直线平行内错角相等得到∠DEF的度数.
解:∵矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF,
∴DF=BF=4,∠BFE=∠DFE,
在Rt△DFC中,FC=2,DF=4,
∴∠FDC=30°,
∴∠DFC=60°,
∴∠BFE=∠DFE=(180°-60°)÷2=60°,
∴∠DEF=∠BFE=60°.
故答案为60.
核心考点
试题【(11·贺州)把一张矩形纸片ABCD按如图方式折叠,使顶点B和顶点D重合,折痕为EF.若BF=4,FC=2,则∠DEF的度数是_  ▲  .】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
(11·贺州)(本题满分5分)
如图,E、F是平行四边形ABCD对角线AC上的两点,BE∥DF.求证:BE=DF.
题型:不详难度:| 查看答案
如图,正方形ABCD的边长为2,点E是BC边的中点,过点B作BG⊥AE,
垂足为G,延长BG交AC于点F,则CF=         
题型:不详难度:| 查看答案
(9分)如图1,在△ABC中,AB=AC,D是底边BC上的一点,BD>CD,将△ABC
沿AD剪开,拼成如图2的四边形ABDC′.
(1)四边形ABDC′具有什么特点?
(2)请同学们在图3中,用尺规作一个以MN,NP为邻边的四边形MNPQ,使四边形MNPQ具有上述特点(要求:写出作法,但不要求证明).
题型:不详难度:| 查看答案
(2011•广州)已知▱ABCD的周长为32,AB=4,则BC=(  )
A.4B.12
C.24D.28

题型:不详难度:| 查看答案
(2011•恩施州)如图,四边形ABCD中,AB=AC=AD,BC=CD,锐角∠BAC的角平分线AE交BC于点E,AF是CD边上的中线,且PC⊥CD与AE交于点P,QC⊥BC与AF交于点Q.求证:四边形APCQ是菱形.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.