当前位置:初中试题 > 数学试题 > 二次函数定义 > (本小题满分12分)已知:直线与轴交于A,与轴交于D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0).(1)求抛物线的解析式;(2)动...
题目
题型:不详难度:来源:
(本小题满分12分)已知:直线轴交于A,与轴交于D,抛物线与直线交于AE两点,与轴交于BC两点,且B点坐标为 (1,0).
(1)求抛物线的解析式;
(2)动点P轴上移动,当△PAE是直角三角形时,求点P的坐标.
(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标.
答案
解:(1)将A(0,1)、B(1,0)坐标代入
   解得
∴抛物线的解折式为
(2)设点E的横坐标为m,则它的纵坐标为
E).
又∵点E在直线上,
.  
解得(舍去),
E的坐标为(4,3).
(Ⅰ)当A为直角顶点时
A轴于点,设
易知D点坐标为(,0).

,∴

(Ⅱ)同理,当为直角顶点时,点坐标为(,0).)
(Ⅲ)当P为直角顶点时,过E轴于,设
,得


解得
∴此时的点的坐标为(1,0)或(3,0).
综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0)
(3)抛物线的对称轴为
BC关于对称,

要使最大,即是使最大.
由三角形两边之差小于第三边得,当ABM在同一直线上时的值最大.
易知直线AB的解折式为
∴由  得  ∴M,-).
解析

核心考点
试题【(本小题满分12分)已知:直线与轴交于A,与轴交于D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0).(1)求抛物线的解析式;(2)动】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
二次函数y=x2-2x-3的图象关于原点O(0,0)对称的图象的解析式是_________.
题型:不详难度:| 查看答案
如图,在第一象限内作射线OC,与x轴的夹角为30o,在射线OC上取一点A,过点A作AH⊥x    轴于点H.在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是          .
题型:不详难度:| 查看答案
(本小题满分10分)
某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:
方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;
方案二:售价不变,但发资料做广告。已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p =  ;
试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!
题型:不详难度:| 查看答案
如图所示,抛物线)与轴的两个交点分别为,当时,的取值范围是          
题型:不详难度:| 查看答案
(本小题满分12分)已知:抛物线x轴交于AB两点,与y轴交于点C. 其中点Ax轴的负半轴上,点Cy轴的负半轴上,线段OAOC的长(OA<OC)是方程的两个根,且抛物线的对称轴是直线

(1)求ABC三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点AB不重合),过点DDEBCAC于点E,连结CD,设BD的长为m,△CDE的面积为S,求Sm的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.