当前位置:初中试题 > 数学试题 > 平行四边形性质 > 小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华...
题目
题型:不详难度:来源:
小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华想了想说:“没问题!让我们来量一量吧!”小明、小华在楼体两侧各选A、B两点,测量数据如图,其中矩形CDEF表示楼体,AB=150米,CD=10米,∠A=30°,∠B=45°,(A、C、D、B四点在同一直线上)问:

(1)楼高多少米?
(2)若每层楼按3米计算,你支持小明还是小华的观点呢?请说明理由.(参考数据:≈1.73,≈1.41,≈2.24)
答案
解:(1)设楼高为x米,则CF=DE=x米,
∵∠A=30°,∠B=45°,∠ACF=∠BDE=90°,∴AC=x米,BD=x米。
x+x=150﹣10,解得(米)。
∴楼高51.1米.
(2)∵51.1米<3×20米,
∴我支持小华的观点,这楼不到20层。
解析

试题分析:(1)设楼高为x,则CF=DE=x,在Rt△ACF和Rt△DEB中分别用x表示AC、BD的值,然后根据AC+CD+BD=150,求出x的值即可。
(2)根据(1)求出的楼高x,然后求出20层楼的高度,比较x和20层楼高的大小即可判断谁的观点正确。 
核心考点
试题【小明、小华在一栋电梯楼前感慨楼房真高.小明说:“这楼起码20层!”小华却不以为然:“20层?我看没有,数数就知道了!”小明说:“有本事,你不用数也能明白!”小华】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是
A.BO=DOB.CD=ABC.∠BAD=∠BCDD.AC=BD

题型:不详难度:| 查看答案
如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是
A.AB=BCB.AC=BCC.∠B=60°D.∠ACB=60°

题型:不详难度:| 查看答案
如图,在梯形ABCD中,AD∥BC,AB=CD=AD=5,∠B=60°,则BC=     

题型:不详难度:| 查看答案
在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是

A.1圈       B.2圈      C.3圈      D.4圈
题型:不详难度:| 查看答案
已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.

(1)求证:AE=EC;
(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.