当前位置:初中试题 > 数学试题 > 平行四边形性质 > 已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点(1)求证:△ABM≌△DCM(2)判断四边形MENF是什么特殊四...
题目
题型:不详难度:来源:
已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点

(1)求证:△ABM≌△DCM
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB=       _时,四边形MENF是正方形(只写结论,不需证明)
答案
解:(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC。
又∵MA=MD,∴△ABM≌△DCM(SAS)。
(2)四边形MENF是菱形。证明如下:
∵N、E、F分别是BC、BM、CM的中点,∴NE∥CM,NE=CM,MF=CM。
∴NE=FM,NE∥FM。∴四边形MENF是平行四边形。
∵△ABM≌△DCM,∴BM=CM。
∵E、F分别是BM、CM的中点,∴ME=MF。
∴平行四边形MENF是菱形。
(3)2:1
解析

试题分析:(1)求出AB=DC,∠A=∠D=90°,AM=DM,根据全等三角形的判定定理推出即可。
(2)根据三角形中位线定理求出NE∥MF,NE=MF,得出平行四边形,求出BM=CM,推出ME=MF,根据菱形的判定推出即可。
(3)当AD:AB=2:1时,四边形MENF是正方形,理由如下:
∵M为AD中点,∴AD=2AM。
∵AD:AB=2:1,∴AM=AB。
∵∠A=90°,∴∠ABM=∠AMB=45°。
同理∠DMC=45°。
∴∠EMF=180°-45°-45°=90°。
∵四边形MENF是菱形,∴菱形MENF是正方形。
核心考点
试题【已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点(1)求证:△ABM≌△DCM(2)判断四边形MENF是什么特殊四】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
如图,已知四边形ABDE是平行四边形,C为边B D延长线上一点,连结AC、CE,使AB=AC.

(1)求证:△BAD≌△AEC;
(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.
题型:不详难度:| 查看答案
如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为

A.cm2   B.cm2    C.cm2      D.cm2
题型:不详难度:| 查看答案
如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于     

题型:不详难度:| 查看答案
如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为
A.B.C.4D.8

题型:不详难度:| 查看答案
如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.

(1)证明:∠BAC=∠DAC,∠AFD=∠CFE;
(2)若AB∥CD,试证明四边形ABCD是菱形;
(3)在(2)的条件下,试确定E点的位置,∠EFD=∠BCD,并说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.