当前位置:初中试题 > 数学试题 > 平行四边形性质 > 如图,在梯形中,,.点,,分别在边,,上,.(1)求证:四边形是平行四边形;(2)当时,求证:四边形是矩形....
题目
题型:不详难度:来源:
如图,在梯形中,,.点,,分别在边,,上,

(1)求证:四边形是平行四边形;
(2)当时,求证:四边形是矩形.
答案
证明见解析.
解析

试题分析:(1)要证明该四边形是平行四边形,只需证明AE∥FG.根据对边对等角∠GFC=∠C,和等腰梯形的性质得到∠B=∠C.则∠B=∠GFC,得到AE∥FG.
(2)在平行四边形的基础上要证明是矩形,只需证明有一个角是直角.根据三角形FGC的内角和是180°,结合∠FGC=2∠EFB和∠GFC=∠C,得到∠BFE+∠GFC=90°.则∠EFG=90°.
试题解析:(1)∵在梯形ABCD中,AB=DC,
∴∠B=∠C.
∵GF=GC,
∴∠C=∠GFC,
∴AB∥GF,即AE∥GF.
∵AE=GF,
∴四边形AEFG是平行四边形;
(2)∵∠FGC+∠GFC+∠C=180°,∠GFC=∠C,∠FGC=2∠EFB,
∴2∠GFC+2∠EFB=180°,
∴∠BFE+∠GFC=90°.
∴∠EFG=90°.
∵四边形AEFG是平行四边形,
∴四边形AEFG是矩形.
核心考点
试题【如图,在梯形中,,.点,,分别在边,,上,.(1)求证:四边形是平行四边形;(2)当时,求证:四边形是矩形.】;主要考察你对平行四边形性质等知识点的理解。[详细]
举一反三
如图,在矩形ABCD中,点O是边AD上的中点,点E是边BC上的一个动点,延长EO到F,使得OE=OF.

(1)当点E运动到什么位置时,四边形AEDF是菱形?(直接写出答案)
(2)若矩形ABCD的周长为20,四边形AEDF的面积是否存在最大值?如果存在,请求出最大值;如果不存在,请说明理由.
(3)若AB=,BC=,当.满足什么条件时,四边形AEDF能成为一个矩形?(不必说明理由)
题型:不详难度:| 查看答案
下列说法不正确的是(   )
A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形
C.有一个角是直角的平行四边形是正方形D.一组邻边相等的矩形是正方形

题型:不详难度:| 查看答案
一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为(   )
A.30°B.45°C.60°D.75°

题型:不详难度:| 查看答案
如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E、F分别是AM、MR的中点,则EF的长随着M点的运动(   )
A.变短B.变长C.不变D.无法确定

题型:不详难度:| 查看答案
一个平行四边形的两边分别是4.8cm和 6cm, 如果平行四边形的高是5cm, 面积是      cm2.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.