当前位置:初中试题 > 数学试题 > 全等三角形的应用 > 如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H。(1)求证:CF=CH;...
题目
题型:河南省期末题难度:来源:
如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H。
(1)求证:CF=CH;
(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论。
答案
(1)证明:
∵AC=CE=CB=CD,∠ACB=∠ECD=90°,
∴∠A=∠B=∠D=∠E=45°。在△BCF和△ECH中 ,
∴△BCF≌△ECH(ASA),
∴CF=CH(全等三角形的对应边相等);
(2)解:四边形ACDM是菱形。证明:
∵∠ACB=∠DCE=90°,∠BCE=45°,
∴∠1=∠2=45°,
∵∠E=45°,
∴∠1=∠E,
∴AC∥DE,
∴∠AMH=180°﹣∠A=135°=∠ACD,
又∵∠A=∠D=45°,
∴四边形ACDM是平行四边形(两组对角相等的四边形是平行四边形),
∵AC=CD,
∴四边形ACDM是菱形。
核心考点
试题【如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H。(1)求证:CF=CH;】;主要考察你对全等三角形的应用等知识点的理解。[详细]
举一反三
如图,BD是△ABC的一条角平分线,DK?AB交BC于E点,且DK=BC,连接BK,CK,得到四边形DCKB,请判断四边形DCKB是哪种特殊四边形,并说明理由.
题型:湖北省期末题难度:| 查看答案
已知E、F分别是平行四边形ABCD的边AB、CD的中点,BD是对角线,AG∥BD交CB的延长线于G.
(1)试说明△ADE≌△CBF;
(2)当四边形AGBD是矩形时,请你确定四边形BEDF的形状并说明;
(3)当四边形AGBD是矩形时,四边形AGCD是等腰梯形吗?直接说出结论.
题型:湖北省期末题难度:| 查看答案
如图,在梯形中ABCD中,AD∥BC,∠ABC=90°,BE⊥CD于点E,AB=BE.
(1)试证明BC=DC;
(2)若∠C=45°,CD=2,求AD的长.
题型:四川省期末题难度:| 查看答案
如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.
(1)求证:①DE=DG; ②DE⊥DG
(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);
(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:
(4)当时,请直接写出的值.
题型:四川省期末题难度:| 查看答案
如图,四边形ABCD是正方形,点E、K分别在BC、AB上,点G在BA的延长线上,且CE=BK=AG.
(1)请探究DE与DG有怎样的数量关系和位置关系?并说明理由.
(2)以线段DE、DG为边作平行四边形DEFG,连接KF(要求:在已知图中作出相应简图),猜想四边形CEFK是怎样的特殊四边形,并说明理由.
题型:重庆市期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.