当前位置:初中试题 > 数学试题 > 等边三角形性质 > 已知,如图,等边△ABC中,D为AC的中点,CE为BC的延长线,且CE=CD.求证:BD=DE....
题目
题型:不详难度:来源:
已知,如图,等边△ABC中,D为AC的中点,CE为BC的延长线,且CE=CD.
求证:BD=DE.
答案
证明:∵等边△ABC,
∴∠ACB=60°,AB=BC,∠ABC=60°,
∵D为AC的中点,
∴∠DBC=
1
2
∠ABC=
1
2
×60°=30°,
∵DC=CE,
∴∠E=∠CDE.
∵∠ACB=∠E+∠EDC=60°,
∴∠E=∠CDE=30°.
∴∠DBC=∠DEC=30°.
∴BD=DE.
核心考点
试题【已知,如图,等边△ABC中,D为AC的中点,CE为BC的延长线,且CE=CD.求证:BD=DE.】;主要考察你对等边三角形性质等知识点的理解。[详细]
举一反三
附加题,学完“几何的回顾”一章后,老师布置了一道思考题:
如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.
(1)请你完成这道思考题;
(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:
①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?
②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?
③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…
请你作出判断,在下列横线上填写“是”或“否”:①______;②______;③______.并对②,③的判断,选择一个给出证明.
题型:不详难度:| 查看答案
如图,木工师傅从边长为90cm的正三角形木板上锯出一正六边形木块,那么正六边形木板的边长为(  )
A.34cmB.32cmC.30cmD.28cm

题型:不详难度:| 查看答案
如图,已知等边△ABC和等边△CDE,P、Q分别为AD、BE的中点.
(1)试判断△CPQ的形状并说明理由.
(2)如果将等边△CDE绕点C旋转,在旋转过程中△CPQ的形状会改变吗?请你将图2中的图形补画完整并说明理由.
题型:不详难度:| 查看答案
三角形ABC是等边三角形,顶点A、B的坐标分别是(0,0),(-4,0),则点C的坐标为______.
题型:不详难度:| 查看答案
如图,△ABC为等边三角形,P为边BC上一点,在AC上取一点D,使AD=AP.
(1)若∠APD=80°,则∠DPC的度数是______;
(2)若∠APD=α度,则∠BAP的度数是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.