当前位置:初中试题 > 数学试题 > 等边三角形性质 > 已知等边三角形△ABC和点P,过点P作三边AB、AC、BC的平行线分别交AC、BC、AB于F、G、E,如图①,点P在BC边上可得PE+PF+PG=BC.当点P在...
题目
题型:不详难度:来源:
已知等边三角形△ABC和点P,过点P作三边AB、AC、BC的平行线分别交AC、BC、AB于F、G、E,如图①,点P在BC边上可得PE+PF+PG=BC.当点P在△ABC内部时(如图②),点P在△ABC外部时如图③,这两种情况下是否还存在PE+PF+PG=BC的结论?若成立请给予证明,若不成立,那么PE、PF、PG与BC又有怎样的关系,请写出你的猜想,不需证明.
答案
(1)如图②,延长FP,与BC交于点D,
∵等边三角形△ABC,
∴∠A=∠B=∠C=60°
∵PEBC,PGAC,PFAB,
∴∠A=∠B=∠C=∠PGD=∠PDG=∠AEP=∠CFP=60°,EP=BD,
∴△PDG为等边三角形,四边形PECG为等腰梯形,
∴PG=DG,PE=BD,PF=CG,
∵BC=BD+DG+CG,
∴BC=PE+PF+PG,

(2)如图③,点P在△ABC外部时,PE+PF+PG=BC的结论不成立,
PE、PF、PG与BC的关系为:PE+PG-PF=BC.
如图③,延长PF,与BC交于点D,
∵等边三角形△ABC,
∴∠A=∠B=∠ACB=60°
∵PEBC,PGAC,PFAB,
∴∠A=∠B=∠ACB=∠PGD=∠PDG=∠AEP=∠CFD=60°,EP=BD,
∴△PDG为等边三角形,四边形PFCG为等腰梯形,
∴PG=DG,PE=BD,PF=CG,
∵BC=BD+DG-CG,
∴BC=PE+PG-PF.
核心考点
试题【已知等边三角形△ABC和点P,过点P作三边AB、AC、BC的平行线分别交AC、BC、AB于F、G、E,如图①,点P在BC边上可得PE+PF+PG=BC.当点P在】;主要考察你对等边三角形性质等知识点的理解。[详细]
举一反三
有一边长为20m的等边△ABC的场地,一个机器人从边AB上点P出发,先由点P沿平行于BC的方向运动到AC边上的点P1,再由Pl沿平行于AB方向运动到BC边上的点P2,又由点P2沿平行于AC方向运动到AB边上的点P3,…,一直按上述规律运动下去,则机器人至少要运动______m才能回到点P.
题型:不详难度:| 查看答案
如图,在边长为4的正三角形ABC中,AD⊥BC于点D,以AD为一边向右作正三角形ADE.
(1)求△ABC的面积S;
(2)判断AC、DE的位置关系,并给出证明.
题型:不详难度:| 查看答案
如图,点C是线段AB上除点A、B外的任意一点,分别以AC、BC为边在线段AB的同旁作等边△ACD和等边△BCE,连接AE交DC于M,连接BD交CE于N,连接MN.
(1)求证:AE=BD;
(2)求证:MNAB.
题型:不详难度:| 查看答案
如图:△ABC和△ADE是等边三角形.证明:BD=CE.
题型:不详难度:| 查看答案
如图,等边△ABC中,D、E分别在AB、AC上,且AD=CE,BE、CD交于点P,若∠ABE:∠CBE=1:2,则∠BDP=______度.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.