当前位置:初中试题 > 数学试题 > 三角形三边关系 > 如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB=AC,∠BAC=90°...
题目
题型:不详难度:来源:
如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.
(1)若AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),试探讨CF与BD的数量关系和位置关系;
②当点D在线段BC的延长线上时,①中的结论是否仍然成立,请在图2中画出相应图形并说明理由;
(2)如图3,若AB≠AC,∠BAC≠90°,∠BCA=45°点D在线段BC上运动,试探究CF与BC位置关系.

魔方格
答案
(1)①∵∠BAC=90°,△ADF是等腰直角三角形,
∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,
∴∠CAF=∠BAD,
在△ACF和△ABD中,





AB=AC
∠CAF=∠BAD
AD=AF

∴△ACF≌△ABD(SAS),
∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∴∠BCF=∠ACF+∠ACB=45°+45°=90°,
∴CF⊥BD;

②如图2,∵∠CAB=∠DAF=90°,
∴∠CAB+∠CAD=∠DAF+∠CAD,
即∠CAF=∠BAD,
在△ACF和△ABD中,





AB=AC
∠CAF=∠BAD
AD=AF

∴△ACF≌△ABD(SAS),
魔方格

∴CF=BD,∠ACF=∠B,
∵AB=AC,∠BAC=90°,
∴∠B=∠ACB=45°,
∴∠BCF=∠ACF+∠ACB=45°+45°=90°,
∴CF⊥BD;

(2)如图3,过点A作AE⊥AC交BC于E,
∵∠BCA=45°,
∴△ACE是等腰直角三角形,
∴AC=AE,∠AED=45°,
∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,
∴∠CAF=∠EAD,
在△ACF和△AED中,





AC=AE
∠CAF=∠EAD
AD=AF

∴△ACF≌△AED(SAS),
∴∠ACF=∠AED=45°,
∴∠BCF=∠ACF+∠BCA=45°+45°=90°,
∴CF⊥BD.
核心考点
试题【如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB=AC,∠BAC=90°】;主要考察你对三角形三边关系等知识点的理解。[详细]
举一反三
在平面直角坐标系内,O为坐标原点,已知A(2,0)、B(0,2),那么∠ABO=______度.
题型:不详难度:| 查看答案
如图,在△ABC中,∠A=90°,DE垂直平分线段BC,分别交AC、BC于点D、E,BD平分∠ABC.
(1)直接写出图中相等的线段.(写出三组,即可得满分)
(2)试判断∠ABD与∠C的大小关系,并证明你的判断结论.魔方格
题型:不详难度:| 查看答案
如果三角形有两条边的垂直平分线的交点恰是第三条边的中点,那么这个三角形是______三角形.
题型:不详难度:| 查看答案
如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,DF⊥AC,垂足为F,你能找出一对全等的三角形吗?为什么它们是全等的?魔方格
题型:不详难度:| 查看答案
如图(1),AB⊥AD,ED⊥AD,AB=CD,AC=DE,试说明BC⊥CE的理由;
如图(2),若△ABC向右平移,使得点C移到点D,AB⊥AD,ED⊥AD,AB=CD,AD=DE,探索BD⊥CE的结论是否成立,并说明理由.

魔方格
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.