当前位置:初中试题 > 数学试题 > 二次函数与一元二次方程 > 已知二次函数y=x2+bx+c的图象与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2-x3=x1-x4=...
题目
题型:不详难度:来源:
已知二次函数y=x2+bx+c的图象与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2-x3=x1-x4=3,求二次函数的解析式,并写出顶点坐标.
答案
∵x2-x3=x1-x4=3
∴x2-x3=3,x1-x4=3
∴x2-x3+x1-x4=6即(x1+x2)-(x3+x4)=6
∴(x1+x2)-(x3+x4)=-b+b2=6,即b2-b-6=0,解得:b=-2或3
∵x2-x3=x1-x4
∴|x1-x2|=|x3-x4|


(x1+x2)2-4x1x2
=


(x3+x4)2-4x3x4

∴9-4c=81-4×20,
解得:c=2
又∵一元二次方程x2+b2x+20=0有两实根
∴△=b4-80≥0,
当b=-2,c=2时,有y=x2-2x+2,
△=4-4×1×2=-4<0,
与x轴无交点,
∴b=-2不合题意舍去
则解析式为y=x2+3x+2,
根据顶点坐标公式可得顶点坐标:(-
3
2
,-
1
4
)
核心考点
试题【已知二次函数y=x2+bx+c的图象与x轴的两个交点的横坐标分别为x1、x2,一元二次方程x2+b2x+20=0的两实根为x3、x4,且x2-x3=x1-x4=】;主要考察你对二次函数与一元二次方程等知识点的理解。[详细]
举一反三
已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x-1013
y-3131
已知方程x2+(a-3)x+3=0在实数范围内恒有解,并且恰有一个解大于1小于2,a的取值范围是______.
以(1,2)为顶点的抛物线与x轴相交于A、B两点,与y轴相交于点M,且A的坐标为(-1,0),求△AMB的面积.
已知方程2x2-3x-5=0两根为
5
2
,-1,则抛物线y=2x2-3x-5与x轴两个交点间距离为______.
当-2<x<1时,抛物线y=ax2+bx+c(a<0)上的点都在x轴的上方,该抛物线与x轴交于A,B两点(A在B左侧),若设A,B两点的坐标分别为A(m,0),B(n,0),则m,n的取值范围分别为(  )
A.m=-2,n=1B.m<-2,n>1C.m≤-2,n≥1D.m≥-2,n≤1