当前位置:初中试题 > 数学试题 > 二次函数的应用 > 矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D。(1)求点D的坐标;(2)若抛物线经过D、A...
题目
题型:江苏模拟题难度:来源:
矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D。
(1)求点D的坐标;
(2)若抛物线经过D、A两点,试确定此抛物线的函数表达式;
(3)若P为x轴上方(2)中抛物线上一点,求△POA面积的最大值;
(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标。
答案
解:(1)直线与BC交于点D(x,3),
把y=3代入中得,x=4,
∴D(4,3)。
(2)∵抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,
把x=4,y=3;x=6,y=0分别代入y=ax2+bx中得,
,解得:
∴抛物线的解析式为:
(3)因△POA底边OA=6,
∴当S△POA有最大值时,点P须位于抛物线的最高点,
<0,
∴抛物线顶点恰为最高点,

的最大值为。(4)抛物线的对称轴与x轴的交点Q1符合条件,
∵CB∥OA,∠Q1OM=∠CDO,
∴Rt△Q1OM∽Rt△CDO,
,该点坐标为Q1(3,0),
过点O作OD的垂线交抛物线的对称轴于点Q2
∵对称轴平行于y轴,
∴∠Q2MO=∠DOC,
 ∴Rt△Q2MO∽Rt△DOC,
在Rt△Q2Q1O和Rt△DCO中,
Q1O=CO=3,∠Q2=∠ODC,
∴Rt△Q2Q1O≌Rt△DCO,
∴CD=Q1Q2=4,
∵点Q2位于第四象限,
∴Q2(3,-4),
因此,符合条件的点有两个,
分别是Q1(3,0),Q2(3,-4)。
核心考点
试题【矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D。(1)求点D的坐标;(2)若抛物线经过D、A】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知抛物线经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC.
(1)求该抛物线的解析式;
(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?
(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.
题型:浙江省模拟题难度:| 查看答案
将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是[     ]
A.y=2(x+1)2+3
B. y=2(x-1)2-3
C. y=2(x+1)2-3
D. y=2(x-1)2+3
题型:浙江省期末题难度:| 查看答案
如图:点P(x,y)为平面直角坐标系内一点,PB⊥x 轴,垂足为B, A为(0,2),若PA=PB,则以下结论正确的是
[     ]
A.点P在直线
B.点P在抛物线
C. 点P在抛物线
D. 点P在抛物线
题型:期末题难度:| 查看答案
已知一抛物线与x轴的交点是A(-1,0)、B(m,0),又经过第四象限的点C(1,n),且m+n= -1,
mn= -12,求此抛物线的解析式。
题型:浙江省期末题难度:| 查看答案
我市“利必好”公司生产的A种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:
题型:浙江省期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x(十万元)
0
1
2

y
1
1.5
1.8