当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知点H(-1,2)在二次函数y=x2-2x+m的图象C1上。(1)求m的值;(2)若抛物线C2:y=ax2+bx+c与抛物线C1关于y轴对称,且Q1(-2,q...
题目
题型:河北省模拟题难度:来源:
已知点H(-1,2)在二次函数y=x2-2x+m的图象C1上。
(1)求m的值;
(2)若抛物线C2:y=ax2+bx+c与抛物线C1关于y轴对称,且Q1(-2,q1)、Q2(-3,q2)在抛物线C2上,则q1q2(用“=”、“>”、“<”、“≥”、“≤”填空)。
(3)设抛物线C2的顶点为M,抛物线C1的顶点为N,请问在抛物线C1或C2上是否存在点P,使以点P、M、N为顶点的三角形是直角三角形?若存在,求出点P的坐标;若不存在,说明理由。
答案

解:(1)∵点H(-1,2)在抛物线上,
∴2=(-1)2-2×(-1)+m,
∴m=-1;
(2)q1<q2
由(1)知,C1==
∴C1的对称轴为:直线x=1,顶点坐标为:(1,-2),
∵抛物线C2与C1关于y轴对称,
∴C2的解析式为:
又∵Q1(-2,q1),Q2(-3,q2)在抛物线C2上,且在对称轴x=-1的左侧,
∴q1<q2
(3)存在这样的点P,使以P,M,N为顶点的三角形是直角三角形,
由上述可知:M(-1,-2),N(1,-2),
① 当M为直角顶点时,点P在C1上,
当x=-1时,y=2,
∴P(-1,2);
② 当N为直角顶点时,点P在C2上,
当x=1时,y=2,
∴P(1,2);
③ 当P为直角顶点时,P(0,-1);
综上可知:点P的坐标为(-1,2)或(1,2)或(0,-1)。

核心考点
试题【已知点H(-1,2)在二次函数y=x2-2x+m的图象C1上。(1)求m的值;(2)若抛物线C2:y=ax2+bx+c与抛物线C1关于y轴对称,且Q1(-2,q】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,抛物线y=x2-2x-4与直线y=x交于点A、B,M是抛物线上一个动点,连接OM。
(1)当M为抛物线的顶点时,求△OMB的面积;
(2)当点M在抛物线上,△OMB的面积为10时,求点M的坐标;
(3)当点M在直线AB的下方且在抛物线对称轴的右侧,M运动到何处时,△OMB的面积最大。
题型:河北省模拟题难度:| 查看答案
如图,△AOC在平面直角坐标系中,∠AOC=90°,且O为坐标原点,点A、C分别在坐标轴上,AO=4,OC=3,将△AOC绕点C按逆时针方向旋转,旋转后的三角形记为△CA′O′。
(1)当CA边落在y轴上(其中旋转角为锐角)时,一条抛物线经过A、C两点且与直线AA′相交于x轴下方一点D,如果S△AOD=9,求这条抛物线的解析式;
(2)继续旋转△CA′O′,当以CA′为直径的⊙P与(1)中抛物线的对称轴相切时,圆心P是否在抛物线上,请说明理由。
题型:河北省模拟题难度:| 查看答案
某校八年级学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话:
小丽:如果以10元/千克的价格销售,那么每天可售出300千克;
小强:如果以13元/千克的价格销售,那么每天可获取利润750元;
小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系。
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)设该超市销售这种水果每天获取的利润为W元,那么当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?【利润=销售量×(销售单价-进价)】
题型:河北省模拟题难度:| 查看答案
如图,在直角坐标系中,O为原点,点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2,二次函数y=x2+mx+2的图象经过点A、B,顶点为D。
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,将上述二次函数图象沿y轴向上或向下平移后经过点C,请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1,点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标。
题型:河北省模拟题难度:| 查看答案
如图,在第一象限内作射线OC,与x轴的夹角为30°,在射线OC上取一点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是(    )。
题型:0103 模拟题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.