当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,抛物线与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF。(1)求a的值;(2...
题目
题型:吉林省中考真题难度:来源:
如图,抛物线与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF。
(1)求a的值;
(2)求点F的坐标。
答案
解:(1)把(3,0)代入
解得
(2)由(1)可知
由四边形OABC为正方形,
可知OC=OA=CB= AB=3,
当y=3时,
解之得x1=1+(不合题意,舍去),
∴点D的坐标为

又∵四边形BDEF是正方形,
所以BF=BD,
∴AB+BF=CB+BD,

∴点F的坐标为
核心考点
试题【如图,抛物线与x轴正半轴交于点A(3,0),以OA为边在x轴上方作正方形OABC,延长CB交抛物线于点D,再以BD为边向上作正方形BDEF。(1)求a的值;(2】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为 [     ]
A.40m/s
B.20m/s
C.10m/s
D.5m/s
题型:河北省中考真题难度:| 查看答案
如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D,点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒)。
(1)求点C的坐标;
(2)当0<t<5时,求S与t之间的函数关系式;
(3)求(2)中S的最大值;
(4)当t>0时,直接写出点在正方形PQMN内部时t的取值范围。
(参考公式:二次函数y=ax2+bx+c图象的顶点坐标为
题型:吉林省中考真题难度:| 查看答案
如图,在Rt △ABC中,∠C=90°,AC=3,AB=5,点P从点C出发沿CA以每秒1个单位长度的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长度的速度向点B匀速运动,伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E,点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止,设点P、Q运动的时间是t秒(t>0)。
(1)当t=2时,AP=____,点Q到AC的距离是____;
(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)
(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值,若不能,请说明理由;
(4)当DE经过点C时,请直接写出t的值。
题型:河北省中考真题难度:| 查看答案
已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A、B两点,与y轴交于点C,其中A(-3,0)、C(0,-2)。
(1)求这条抛物线的函数表达式;
(2)已知在对称轴上存在一点P,使得△PBC的周长最小,请求出点P的坐标;
(3)若点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE∥PC交x轴于点E,连接PD、PE,设CD的长为m,△PDE的面积为S,求S与m 之间的函数关系式,试说明S是否存在最大值,若存 在,请求出最大值;若不存在,请说明理由。
题型:山东省中考真题难度:| 查看答案
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0),D(8,8),抛物线y=ax2+bx过点A、C两点。
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P作PE⊥AB交AC于点E。
①过点E作EF⊥AD于点F,交抛物线于点G,当t为何值时,线段EG最长?
②连接EQ,在点P、Q运动的过程中,判断有几个时刻△CEQ是等腰三角形?请直接写出相应的t值。
题型:河南省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.