当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线的顶点是C(0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点。(1)求含有常数a的抛物线的解析式;(2)设点P是...
题目
题型:四川省中考真题难度:来源:
已知抛物线的顶点是C(0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点。
(1)求含有常数a的抛物线的解析式;
(2)设点P是抛物线任意一点,过P作PH⊥x轴,垂足是H,求证:PD=PH;
(3)设过原点O的直线l与抛物线在第一象限相交于A、B两点,若DA=2DB,且S△ABD=4,求a的值。
答案
解:(1)设抛物线的解析式为y=kx2+a,
∵点D(2a,2a)在抛物线上,
4a2k+a=2a,
∴k=
∴抛物线的解析式为y=x2+a; (2)设抛物线上一点P(x,y),过P作PH⊥x轴,PG⊥y轴,
在Rt△GDP中,由勾股定理得:PD2=DG2+PG2=(y-2a)2+x2=y2-4ay+4a2+x2
∵y=x2+a
∴x2= 4a×(y-a)=4ay-4a2
∴PD2=y2-4ay+4a2+4ay-4a2=y2=PH2
∴PD=PH。

(3)过B点BE⊥x轴,AF⊥x轴,
由(2)的结论:BE=DB AF=DA,
∵DA=2DB,
∴AF=2BE,
∴AO=2BO,
∴B是OA的中点,
∴C是OD的中点,
连结BC,
∴BC===BE=DB,
过B作BR⊥y轴,
∵BR⊥CD,
∴CR=DR,OR=a+=
∴B点的纵坐标是,又点B在抛物线上,
=x2+a,
∴x2=2a2
∵x>0,
∴x=a,
∴B (a,
AO=2OB,
∴S△ABD=S△OBD=4
所以,×2a×a=4
∴a2=4,
∵a>0,
∴a=2。

核心考点
试题【已知抛物线的顶点是C(0,a) (a>0,a为常数),并经过点(2a,2a),点D(0,2a)为一定点。(1)求含有常数a的抛物线的解析式;(2)设点P是】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.
(1)如图(1),若∠AOB=60°,求抛物线C的解析式;
(2)如图(2),若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;
(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得的点P的坐标。
(1)                                         (2)
题型:四川省中考真题难度:| 查看答案
注意:为了使同学们更好她解答本题,我们提供了一种分析问题的方法,你可以依照这个方法按要求完成本题的解答,也可以选用其他方法,按照解答题的一班要求进行解答即可。
某商品现在的售价为每件35元,每天可卖出50件,市场调查反映:如果调整价格,每降价1元,每天可多卖出2件,请你帮助分析,当每件商品降价多少元时,可使每天的销售额最大,最大销售额是多少?设每件商品降价x元,每天的销售额为y元。
(I)分析:根据问题中的数量关系,用含x的式子填表;
(Ⅱ)由以上分析,用含x的式子表示y,并求出问题的解。
题型:天津中考真题难度:| 查看答案
已知抛物线C1,点F(1,1)。
(Ⅰ)求抛物线C1的顶点坐标;
(Ⅱ)①若抛物线C1与y轴的交点为A,连接AF,并延长交抛物线C1于点B,求证:
②抛物线C1上任意一点P(xp,yp)(0<xp<1),连接PF,并延长交抛物线C1于点Q(xq,yq),试判断是否成立?请说明理由;
(Ⅲ)将抛物线C1作适当的平移,得抛物线C2,若2<x≤m时,y2≤x,恒成立,求m的最大值。
题型:天津中考真题难度:| 查看答案
如图,在等腰梯形ABCD中,AD=4,BC=9,∠B=45°,动点P从点B出发沿BC向点C运动,动点Q同时以相同速度从点C出发沿CD向点D运动,其中一个动点到达端点时,另一个动点也随之停止运动。
(1)求AB的长;
(2)设BP=x,问当x为何值时△PCQ的面积最大,并求出最大值;
(3)探究:在AB边上是否存在点M,使得四边形PCQM为菱形?请说明理由。
题型:新疆自治区中考真题难度:| 查看答案
如图,在Rt△ABC中,∠C=90°,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿B→C→A方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动。
(1)求AC、BC的长;
(2)设点P的运动时间为x(秒),△PBQ的面积为y(cm2),当△PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;
(3)当点Q在CA上运动,使PQ⊥AB时,以点B、P、Q为定点的三角形与△ABC是否相似,请说明理由;
(4)当x=5秒时,在直线PQ上是否存在一点M,使△BCM得周长最小,若存在,求出最小周长,若不存在,请说明理由。
题型:云南省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.