当前位置:初中试题 > 数学试题 > 二次函数的应用 > 抛物线图象如图所示,根据图象,抛物线的解析式可能是[     ]A.B.C.D....
题目
题型:四川省中考真题难度:来源:
抛物线图象如图所示,根据图象,抛物线的解析式可能是

[     ]

A.
B.
C.
D.
答案
C
核心考点
试题【抛物线图象如图所示,根据图象,抛物线的解析式可能是[     ]A.B.C.D.】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图(1)所示,抛物线y=x2+bx+c与x轴交于A,B两点,与y轴交于点C(0,2),连接AC,若tan∠OAC=2。
(1)求抛物线对应的二次函数的解析式;
(2)在抛物线的对称轴l上是否存在点P,使∠APC=90°,若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2)所示,连接BC,M是线段BC上(不与B、C重合)的一个动点,过点M作直线l′∥l,交抛物线于点N,连接CN、BN,设点M的横坐标为t.当t为何值时,△BCN的面积最大?最大面积为多少?


图1                                                           图2

题型:四川省中考真题难度:| 查看答案
已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-4),与x轴交于A、B两点,A(-1,0)。
(1)求这条抛物线的解析式;
(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线的对称轴交于E,依次连接A、D、B、E,点Q为AB上一个动点(Q与A、B两点不重合),过点Q作QF⊥AE于F,QG⊥DB于G,请判断是否为定值,若是,请求出此定值,若不是,请说明理由;
(3)在(2)的条件下,若点H是线段EQ上一点,过点H作MN⊥EQ,MN分别与边AE、BE相交于M、N(M与A、E不重合,N与E、B不重合),请判断是否成立,若成立,请给出证明,若不成立,请说明理由。
题型:四川省中考真题难度:| 查看答案
二次函数的图像如图所示,请将此图像向右平移1个单位,再向下平移2个单位。

(1)画出经过两次平移后所得到的图像,并写出函数的解析式。
(2)求经过两次平移后的图像与x轴的交点坐标,指出当x满足什么条件时,函数值大于0?
题型:云南省中考真题难度:| 查看答案
如图①,梯形ABCD中,∠C=90°,动点E、F同时从点B出发,点E沿折线BA-AD-DC运动到点C时停止运动,点F沿BC运动到点C时停止运动,它们运动时的速度都是1cm/s,设E、F出发ts时,△EBF的面积为ycm2,已知y与t的函数图象如图②所示,其中曲线OM为抛物线的一部分,MN、NP为线段,请根据图中的信息,解答下列问题:
(1)梯形上底的长AD=_____cm,梯形ABCD的面积_____cm2
(2)当点E在BA、DC上运动时,分别求出y与t的函数关系式(注明自变量的取值范围);
(3)当t为何值时,△EBF与梯形ABCD的面积之比为1:2。
题型:江苏中考真题难度:| 查看答案
在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y。
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围);
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由。
题型:江苏省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.