当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知二次函数y=ax2+bx+c中的x,y满足下表: 求这个二次函数关系式。...
题目
题型:广东省中考真题难度:来源:
已知二次函数y=ax2+bx+c中的x,y满足下表:

求这个二次函数关系式。
答案
解:把点(0,-2)代入得c=-2
再把点分别代入

解得
∴这个二次函数的关系式为:
核心考点
试题【已知二次函数y=ax2+bx+c中的x,y满足下表: 求这个二次函数关系式。】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知一个三角形纸片ABC,BC边的长为8,BC边上的高为6,∠B和∠C都为锐角,M为AB一动点(点M与点A、B不重合),过点M作MN∥BC,交AC于点N,在△AMN中,设MN的长为x,MN上的高为h。
(1)请你用含x的代数式表示h;
(2)将△AMN沿MN折叠,使△AMN落在四边形BCNM所在平面,设点A落在平面的点为A1,△A1MN与四边形BCNM重叠部分的面积为y,当x为何值时,y最大,最大值为多少
题型:广东省中考真题难度:| 查看答案
如图所示,某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造,已知△ABC的边BC长120米,高AD长80米。学校计划将它分割成△AHG、△BHE、△GFC和矩形EFGH四部分(如图)。其中矩形EFGH的一边EF在边BC上,其余两个顶点H、G分别在边AB、AC上。现计划在△AHG上种草,每平方米投资6元;在△BHE、△FCG上都种花,每平方米投资10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元。
(1)当FG长为多少米时,种草的面积与种花的面积相等?
(2)当矩形EFGH的边FG为多少米时,△ABC空地改造总投资最小?最小值为多少?
题型:湖北省中考真题难度:| 查看答案
直线y=-x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止,点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动。
(1)直接写出A、B两点的坐标;
(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;
(3)当S=时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标。
题型:黑龙江省中考真题难度:| 查看答案
如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF-EO|,再以CM、CO为边作矩形CMNO。
(1)试比较EO、EC的大小,并说明理由;
(2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由;
(3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式;
(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。
题型:湖北省中考真题难度:| 查看答案
如图①,已知抛物线(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C。

(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标。
题型:湖北省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.