当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6)。(1)...
题目
题型:内蒙古自治区中考真题难度:来源:
如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6)。

(1)求此二次函数的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,求点P和点Q的坐标;
(3)在x轴上有一动点M,当MQ+MA取得最小值时,求M点的坐标。
答案
解:(1)解方程

抛物线与轴的两个交点坐标为:
设抛物线的解析式为:
在抛物线上


∴抛物线解析式为:
(2)由
∴抛物线顶点P的坐标为:(-1,-2),对称轴方程为:x=-1
设直线AC的方程为:
在该直线上
解得
∴直线AC的方程为:
代入
∴Q点坐标为(-1,2)。
(3)作A关于x轴的对称点,连接与x轴交于点M即为所求的点
设直线方程为
解得
∴直线
,则
∴M点坐标为(0,0)。
核心考点
试题【如图,一元二次方程x2+2x-3=0的二根x1,x2(x1<x2)是抛物线y=ax2+bx+c与x轴的两个交点B,C的横坐标,且此抛物线过点A(3,6)。(1)】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
抛物线y=ax2+bx+c交x轴于A,B两点,交y轴于点C,对称轴为直线x=1,已知:A(-1,0),C(0,-3)。
(1)求抛物线y=ax2+bx+c的解析式;
(2)求△AOC和△BOC的面积的比;
(3)在对称轴是否存在一个点P,使△PAC的周长最小,若存在,请求出点P的坐标;若不存在,请说明理由。
题型:湖南省中考真题难度:| 查看答案
如图1,矩形纸片ABCD中,AB=4,BC=4,将矩形沿对角线AC剪开,解答以下问题:
(1)在△ACD绕点C顺时针旋转60°,△A1CD1是旋转后的新位置(图2),求此AA1的距离;
(2)将△ACD沿对角线AC向下翻折(点A、点C位置不动,△ACD和△ABC落在同一平面内),△ACD2是翻折后的新位置(图3),求此时BD2的距离;
(3)将△ACD沿CB向左平移,设平移的距离为x(0≤x≤4), △A2C1D3是平移后的新位置(图3),若△ABC与△A2C1D3重叠部分的面积为Y,求Y关于X的函数关系式。
题型:湖南省中考真题难度:| 查看答案
如图,二次函数y=ax2的图象与一次函数y=x+b的图象相交于A(-2,2)、B两点,从点A和点B分别引平行于y轴的直线与x轴分别交于C,D两点,点P(t,0)为线段CD上的动点,过点P且平行于y轴的直线与抛物线和直线分别交于R,S。
(1)求一次函数和二次函数的解析式,并求出点B的坐标;
(2)当SR=2RP时,计算线段SR的长;
(3)若线段BD上有一动点Q且其纵坐标为t+3,问是否存在t的值,使S△BRQ=15,若存在,求t的值;若不存在,说明理由。
题型:辽宁省中考真题难度:| 查看答案
已知平面直角坐标系中,A、B、C三点的坐标分别是(0,2)、(0,-2),(4,-2)。
(1)请在给出的直角坐标系XOY中(下图),画出△ABC,设AC交X轴于点D,连结BD,证明:OD平分∠ADB;
(2)请在X轴上找出点E,使四边形AOCE为平行四边形,写出E点坐标,并证明四边形AOCE是平行四边形;
(3)设经过点B,且以CE所在直线为对称轴的抛物线的顶点为F,求直线FA的解析式。
题型:湖南省中考真题难度:| 查看答案
已知抛物线y=ax2+bx+c经过P(,3),E(,0)及原点O(0,0)。
(1)求抛物线的解析式;
(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC(如图),是否存在点Q,使得△OPC与△PQB相似?若存在,求出Q点的坐标;若不存在,请说明理由;
(3)如果符合(2)中的Q点在x轴的上方,连接OQ,矩形OABC内的四个三角形△OPC,△PQB,△OQP,△OQA之间存在怎样的关系,为什么?
题型:辽宁省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.