当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在△ABC中,AB=AC,E是高AD上的动点,F是点D关于点E的对称点(点F在高AD上,且不与A,D重合),过点F作BC的平行线与AB交于G与AC交于H,...
题目
题型:广东省中考真题难度:来源:
如图,在△ABC中,AB=AC,E是高AD上的动点,F是点D关于点E的对称点(点F在高AD上,且不与A,D重合),过点F作BC的平行线与AB交于G与AC交于H,连接GE并延长交BC于点I,连接HE并延长交BC于点J,连接GJ,HI。
(1)求证:四边形GHIJ是矩形;
(2)若BC=10,AD=6,设DE=x,S矩形GHIJ=y。
①求y与x的函数关系式,并写出自变量x的取值范围;
②点E在何处时,矩形GHIJ的面积与△AGH的面积相等?

答案
解:(1)∵F,E关于点D对称,
∴FE=ED
又∵GH∥BC,
∴∠FGE=∠EID,
∵∠GEF=∠DEI,
∴△GEF≌△IED,
∴GE=EI,
同理可证EH=JE,
∴四边形GHIJ是平行四边形,
∵AB=AC,GH∥BC,AD⊥BC,
∴AF垂直平分GH,
∴EF∥HI(三角形中位线定理),
∴HI⊥GH,四边形GHIJ是矩形;
(2)①由(1)得,DF=2ED=2x,
∵GH∥BC,
∴△AGH∽△ABC,



∵AF=6-2x>0,
∴x<3,
∴0<x<3,
②要使矩形GHIJ的面积等于△AGH的面积,则需AF=2DF,
即6-2x=4x,
∴x=1,
∴当点E与点D的距离为1时,四边形GHIJ的面积与△AGH的面积相等。
核心考点
试题【如图,在△ABC中,AB=AC,E是高AD上的动点,F是点D关于点E的对称点(点F在高AD上,且不与A,D重合),过点F作BC的平行线与AB交于G与AC交于H,】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
某品牌电饭锅成本价为70元,销售商对其销量与定价的关系进行了调查,结果如下:

为获得最大利润,销售商应将该品牌电饭锅定价为(    )元。
题型:山西省中考真题难度:| 查看答案
甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球飞行的水平距离s(米)与其距地面高度h(米)之间的关系式为,如图,已知球网AB距原点5米,乙(用线段CD表示)扣球的最大高度为米,设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m的取值范围是(    )。

题型:山西省中考真题难度:| 查看答案
如图,已知抛物线C1与坐标轴的交点依次是A(-4,0),B(-2,0),E(0,8)。
(1)求抛物线C1关于原点对称的抛物线C2的解析式;
(2)设抛物线C1的顶点为M,抛物线C2与x轴分别交于C,D两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S,若点A,点D同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止,求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;
(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;
(4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由。

题型:山西省中考真题难度:| 查看答案
一条隧道的截面如图所示,它的上部是一个以AD为直径的半圆O,下部是一个矩形ABCD。
⑴当AD=4米时,求隧道截面上部半圆O的面积;
⑵已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米。
①求隧道截面的面积S(米2)关于半径r(米)的函数关系式(不要求写出r的取值范围);
②若2米≤CD≤3米,利用函数图象求隧道截面的面积S的最大值(π取3.14,结果精确到0.1米)
题型:福建省中考真题难度:| 查看答案
如图所示,在直角坐标系中,矩形ABCD的边AD在x轴上,点A在原点,AB=3,AD=5。若矩形以每秒2个单位长度沿x轴正方向作匀速运动,同时点P从A点出发以每秒1个单位长度沿A-B-C-D的路线作匀速运动,当P点运动到D点时停止运动,矩形ABCD也随之停止运动。

(1)求P点从A点运动到D点所需的时间;
(2)设P点运动时间为t(秒)。
①当t=5时,求出点P的坐标;
②若⊿OAP的面积为s,试求出s与t之间的函数关系式(并写出相应的自变量t的取值范围)。
题型:福建省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.