当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点...
题目
题型:河北省期末题难度:来源:
如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点作PQ垂直于直线OA,垂足为Q.设P点移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.
(1)求经过O、A、B三点的抛物线解析式;
(2)求S与t的函数关系式;
(3)将△OPQ绕着点P顺时针旋转90°,是否存在t,使得△OPQ的顶点O或Q在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.
答案
解:(1)由图象可知:抛物线经过原点, 设抛物线解析式为y=ax2+bx(a≠0). 把A(1,1),B(3,1)代入上式得:
解得
∴所求抛物线解析式为y=﹣x2+x.
(2)分三种情况:S=t2,BM=BN=1﹣(t﹣3)=4﹣t
①当0<t≤2,重叠部分的面积是S△OPQ,过点A作AF⊥x轴于点F,
∵A(1,1),
∴在Rt△OAF中,AF=OF=1,∠AOF=45°,在Rt△OPQ中,OP=t,∠OPQ=∠QOP=45°,
∴PQ=OQ=tcos 45°=t.S=t2,
②当2<t≤3,设PQ交AB于点G,作GH⊥x轴于点H,∠OPQ=∠QOP=45°,则四边形OAGP是等腰梯形,重叠部分的面积是S梯形OAGP
∴AG=FH=t﹣2,
∴S=(AG+OP)AF=(t+t﹣2)×1=t﹣1.
③当3<t<4,设PQ与AB交于点M,交BC于点N,重叠部分的面积是S五边形OAMNC
因为△PNC和△BMN都是等腰直角三角形,
所以重叠部分的面积是S五边形OAMNC=S梯形OABC﹣S△BMN
∵B(3,1),OP=t,
∴PC=CN=t﹣3,
∴S=(2+3)×1﹣(4﹣t)2,S=﹣t2+4t﹣
(3)存在.
当O点在抛物线上时,将O(t,t)代入抛物线解析式,解得t=0(舍去),t=1;
当Q点在抛物线上时,Q(t,t)代入抛物线解析式得t=0(舍去),t=2.
故t=1或2.
核心考点
试题【如图所示,已知在直角梯形OABC中,AB∥OC,BC⊥x轴于点C、A(1,1)、B(3,1).动点P从O点出发,沿x轴正方向以每秒1个单位长度的速度移动.过P点】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
某电视机生产厂家去年销往农村的某品牌电视机每台的售价y (元)与月份x 之间满足函数关系y=-50x+2600 ,去年的月销售量p (万台)与月份x 之间成一次函数关系,其中两个月的销售情况如下表:
(1 )求该品牌电视机在去年哪个月销往农村的销售金额最大?最大是多少?
(2 )由于受国际金融危机的影响,今年1 ,2 月份该品牌电视机销往农村的售价都比去年12 月份下降了m% ,且每月的销售量都比去年12 月份下降了1.5m% .国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13% 给予财政补贴.受此政策的影响,今年3 至5 月份,该厂家销往农村的这种电视机在保持今年2 月份的售价不变的情况下,平均每月的销售量比今年2 月份增加了1.5 万台.若今年3 至5 月份国家对这种电视机的销售共给予了财政补贴936 万元,求m 的值(保留一位小数).(参考数据: ≈5.831,≈5.916,≈6.083,≈6.164)
题型:重庆市期末题难度:| 查看答案
已知二次函数图象顶点坐标(﹣1,﹣8)且过点(0,﹣6),求该二次函数解析式和该图象与x轴交点坐标.
题型:浙江省月考题难度:| 查看答案
设函数y=kx2+(2k+1)x+1(k为实数)
(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并在同一直角坐标系中,用描点法画出这两个特殊函数的图象;
(2)根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;
(3)对任意负实数k,当x<m时,y随着x的增大而增大,试求出m的一个值.
题型:浙江省月考题难度:| 查看答案
已知抛物线y=x2﹣2x+m﹣1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.
(1)求m的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线C",且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C"上求点P,使得△EFP是以EF为直角边的直角三角形.
题型:浙江省月考题难度:| 查看答案
如图1,在平面直角坐标系中,点B在直线y=2x上,过点B作x轴的垂线,垂足为A,OA=5.若抛物线过点O、A两点.
(1)求该抛物线的解析式;
(2)若A点关于直线y=2x的对称点为C,判断点C是否在该抛物线上,并说明理由;
(3)如图2,在(2)的条件下,⊙O1是以BC为直径的圆.过原点O作O1的切线OP,P为切点(P与点C不重合),抛物线上是否存在点Q,使得以PQ为直径的圆与O1相切?若存在,求出点Q的横坐标;若不存在,请说明理由.
题型:湖北省月考题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.