当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图所示,已知二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l为过点(0,﹣2)且与x轴平行的直线,P(m,n)是该二次函数图象上...
题目
题型:湖南省中考真题难度:来源:
如图所示,已知二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l为过
点(0,﹣2)且与x轴平行的直线,P(m,n)是该二次函数图象上的任意一点,过P作
PH⊥l,H为垂足.
(1)求二次函数y=ax2+bx﹣1(a≠0)的解析式;
(2)请直接写出使y<0的对应的x的取值范围;
(3)对应当m=0,m=2和m=4时,分别计算|PO|2和|PH|2的值.由此观察其规律,并猜想一个结论,证明对于任意实数m,此结论成立;
(4)试问是否存在实数m可使△POH为正三角形?若存在,求出m的值;若不存在,请说明理由.
答案

解:(1)∵二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),

解得a=,b=0,
∴二次函数的解析式为y=x2﹣1,
(2)令y=x2﹣1=0,
解得x=﹣4或x=4,
由图象可知当﹣4<x<4时y<0,
(3)当m=0时,|PO|2=1,|PH|2=1;
当m=2时,P点的坐标为(2,0),|PO|2=4,|PH|2=4,
当m=4时,P点的坐标为(4,3),|PO|2=25,|PH|2=25,
由此发现|PO|2=|PH|2,设P点坐标为(m,n),即n=m2﹣1
|OP|=,|PH|2=n2+4n+4=n2+m2
故对于任意实数m,
|PO|2=|PH|2
(4)由(3)知OP=PH,只要OH=OP成立,△POH为正三角形,
设P点坐标为(m,n),|OP|=,|OH|=
|OP|=|OH|,即n2=4,解得n=±2,
当n=﹣2时,n=m2﹣1不符合条件,
故n=2,m=±2时可使△POH为正三角形.


核心考点
试题【如图所示,已知二次函数y=ax2+bx﹣1(a≠0)的图象过点A(2,0)和B(4,3),l为过点(0,﹣2)且与x轴平行的直线,P(m,n)是该二次函数图象上】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
阳光公司生产某种产品,每件成本3 元,售价4 元,年销售量为20 万件,为获得更好的效益,公司准备拿出一定的资金做广告。根据经验,每年投入的广告费是(万元)时,产品的销量是原销量的倍,且之间满足:

如果把利润看成是销售总额减去成本费和广告费。
(1)(万元)与广告费(万元)的函数关系式,并注明的取值范围;
(2),要使利润随广告费的增大而增大,求的取值范围。
题型:江苏中考真题难度:| 查看答案
如图,抛物线与x轴交于A.B两点(点A在点B的左侧),与y轴交于点C,点C与点F关于抛物线的对称轴对称,直线AF交y轴于点E,|OC|:|OA|=5:1.
(1)求抛物线的解析式;
(2)求直线AF的解析式;
(3)在直线AF上是否存在点P,使△CFP是直角三角形?若存在,求出P点坐标;若不存在,说明理由
题型:内蒙古自治区中考真题难度:| 查看答案
如图,在平面直角坐标系xOy中,已知直线l1:y=x与直线l2:y= -x+6相交于点M,直线l2与x轴相交于点N.
(1)求M,N的坐标.
(2)矩形ABCD中,已知AB=1,BC=2,边AB在x轴上,矩形ABCD沿x轴自左向右以每秒1个单位长度的速度移动,设矩形ABCD与△OMN的重叠部分的面积为S,移动的时间为t(从点B与点O重合时开始计时,到点A与点N重合时计时开始结束).直接写出S与自变量t之间的函数关系式(不需要给出解答过程).
(3)在(2)的条件下,当t为何值时,S的值最大?并求出最大值.

题型:江苏中考真题难度:| 查看答案
已知,如图,在平面直角坐标系中,点A坐标为(﹣2,0),点B坐标为(0,2 ),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=﹣x2+mx+n的图象经过A,C两点.
(1)求此抛物线的函数表达式;
(2)求证:∠BEF=∠AOE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的(2+1)倍.若存在,请直接写出点P的坐标;若不存在,请说明理由.
题型:辽宁省中考真题难度:| 查看答案
已知抛物线y=ax2+2x+c的图象与x轴交于点A(3,0)和点C,与y轴交于点B(0,3).(1)求抛物线的解析式;
(2)在抛物线的对称轴上找一点D,使得点D到点B、C的距离之和最小,并求出点D的坐标;
(3)在第一象限的抛物线上,是否存在一点P,使得△ABP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.
题型:广西自治区中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.