当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图所示,在平面直角坐标系xoy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经...
题目
题型:贵州省中考真题难度:来源:
如图所示,在平面直角坐标系xoy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且18a+c=0
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动,同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动。
①移动开始后第t秒时,设△PBQ的面积为S,试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最大值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标,如果不存在,请说明理由。
答案
解:(1)设抛物线的解析式为y=ax2+bx+c,由题意知点A(0,-12),
所以c=-12,
又18a+c=0,a=
∵AB∥OC,且AB=6,
∴抛物线的对称轴是
∴b=-4,
所以抛物线的解析式为
(2)①
t的取值范围:0≤t≤6;
②当t=3时,S取最大值为9,这时点P的坐标(3,-12),点Q坐标(6,-6);
若以P、B、Q、R为顶点的四边形是平行四边形,有如下三种情况:
(Ⅰ)当点R在BQ的左边,且在PB下方时,点R的坐标(3,-18),将(3,-18)代入抛物线的解析式中,满足解析式,所以存在,点R的坐标就是(3,-18);
(Ⅱ)当点R在BQ的左边,且在PB上方时,点R的坐标(3,-6),将(3,-6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件;
(Ⅲ)当点R在BQ的右边,且在PB上方时,点R的坐标(9,-6),将(9,-6)代入抛物线的解析式中,不满足解析式,所以点R不满足条件;
综上所述,点R坐标为(3,-18)。
核心考点
试题【如图所示,在平面直角坐标系xoy中,矩形OABC的边长OA、OC分别为12cm、6cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,顶点为P (4 ,-4 )的二次函数图象经过原点(0 ,0 ),点A 在该图象上,OA 交其对称轴l于点M,点M、N关于点P对称,连接AN、ON。
(1)求该二次函数的关系式;
(2)若点A的坐标是(6,-3),求△ANO的面积;
(3)当点A在对称轴l右侧的二次函数图象上运动,请解答下列问题:
①证明:∠ANM=∠ONM;
②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标,如果不能,请说明理由。
题型:海南省中考真题难度:| 查看答案
如图,抛物线与x轴交于A、B两点,与y轴交于C点,且A(-1,0)。
(1)求抛物线的解析式及顶点D的坐标;
(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值。
题型:中考真题难度:| 查看答案
在矩形ABCD中,AB=2,AD=3,P是BC上的任意一点(P 与B 、C 不重合),过点P 作AP ⊥PE ,垂足为P ,PE 交CD 于点E。
(1)连接AE ,当△APE 与△ADE 全等时,求BP 的长;
(2)若设BP 为x ,CE 为y ,试确定y 与x 的函数关系式,当x取何值时,y的值最大?最大值是多少?
(3)若PE∥BD,试求出此时BP的长。
题型:中考真题难度:| 查看答案
已知抛物线经过A(2,0),设顶点为点P,与x轴的另一交点为点B。
(1)求b的值,求出点P、点B的坐标;
(2)如图,在直线 y=x上是否存在点D,使四边形OPBD为平行四边形?若存在,求出点D的坐标;若不存在,请说明理由;
(3)在x轴下方的抛物线上是否存在点M,使△AMP≌△AMB?如果存在,试举例验证你的猜想;如果不存在,试说明理由。
题型:中考真题难度:| 查看答案
已知抛物线顶点为(1,3),且与y轴交点的纵坐标为﹣1,则此抛物线解析式是(    ).
题型:期末题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.