当前位置:初中试题 > 数学试题 > 二次函数的应用 > 发射一枚炮弹,经x s后的高度为y m,且高度y与时间x的函数关系式为y=ax2+bx,若此炮弹在第6s与第14s时的高度相等,则炮弹达到最大高度的时间是(  ...
题目
题型:不详难度:来源:
发射一枚炮弹,经x s后的高度为y m,且高度y与时间x的函数关系式为y=ax2+bx,若此炮弹在第6s与第14s时的高度相等,则炮弹达到最大高度的时间是(  )
A.第8sB.第10sC.第12sD.第15s
答案
∵x取6和14时y的值相等,
∴抛物线y=ax2+bx的对称轴为直线x=6+
14-6
2
=10,
即炮弹达到最大高度的时间是10s.
故选B.
核心考点
试题【发射一枚炮弹,经x s后的高度为y m,且高度y与时间x的函数关系式为y=ax2+bx,若此炮弹在第6s与第14s时的高度相等,则炮弹达到最大高度的时间是(  】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y(万元)与进货量x(吨)近似满足函数关系y=0.3x;乙种水果的销售利润y(万元)与进货量x(吨)近似满足函数关系y=ax2+bx(其中a≠0,a,b为常数),且进货量x为1吨时,销售利润y为1.4万元;进货量x为2吨时,销售利润y为2.6万元.
(1)求y(万元)与x(吨)之间的函数关系式.
(2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t吨,请你写出这两种水果所获得的销售利润之和W(万元)与t(吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?
题型:山西难度:| 查看答案
二次函数:y=x2+bx+c的图象经过点A(-1,0)、B(3,0)两点,其顶点坐标是______.
题型:太原难度:| 查看答案
用一根长为8m的木条,做一个长方形的窗框,若宽为xm,则该窗户的面积y(m2)与x(m)之间的函数关系式为______.
题型:不详难度:| 查看答案
已知二次函数图象的顶点坐标是(1,-4),且与y轴交于点(0,-3),求此二次函数的解析式.
题型:不详难度:| 查看答案
小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=-10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.