某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.房价定为多少时,宾馆利润最大? |
设房价为(180+10x)元,则定价增加了10x元,此时空闲的房间为x, 由题意得,y=(180+10x)(50-x)-(50-x)×20=-10x2+340x+8000=-10(x-17)2+10890 故可得当x=17,即房间定价为180+170=350元的时候利润最大. 答:房间定价为350元时,利润最大. |
核心考点
试题【某宾馆有50个房间供游客居住,当每个房间的定价为每天180元时,房间会全部住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需】;主要考察你对
二次函数的应用等知识点的理解。
[详细]
举一反三
已知y是关于x的二次函数,x与y的对应值如下表所示:
x的值 | -2 | 0 | 2 | 4 | y的值 | 3 | -2 | 0 | | 在黄州服装批发市场,某种品牌的时装当季节将来临时,价格呈上升趋势,设这种时装开始时定价为20元,并且每周(7天)涨价2元,从第6周开始保持30元的价格平稳销售;从第12周开始,当季节即将过去时,平均每周减价2元,直到第16周周末,该服装不再销售. (1)试建立销售价y与周次x之间的函数关系式; (2)若这种时装每件进价Z与周次x次之间的关系为Z=-0.125(x-8)2+12.1≤x≤16,且x为整数,试问该服装第几周出售时,每件销售利润最大?最大利润为多少? | 已知抛物线y=ax2+bx+c经过A(-1,0),B(2,-3),C(3,0)三点. (1)求抛物线的解析式; (2)若抛物线的顶点为D,E是抛物线上的点,并且满足△AEC的面积是△ADC面积的3倍,求点E的坐标; (3)设点M是抛物线上,位于x轴的下方,且在对称轴左侧的一个动点,过M作x轴的平行线,交抛物线于另一点N,再作MQ⊥x轴于Q,NP⊥x轴于P.试求矩形MNPQ周长的最大值. | 与抛物线y=-x2+3的图象形状相同,但开口方向不同,顶点坐标是(0,-2)的抛物线解析式是______. | 在平面直角坐标系xOy中,有一抛物线y=x2-2x-3,与x轴交于点B、点C (B在C的左侧),点A在该抛物线上,且横坐标为-2,蓬接AB、AC现将背面完全相同,正面分别标有数-2、-1、0、1、2的5张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数作为点P的横坐标,将该数加1作为点P的纵坐标,则点P落在△ABC内(含边界)的概率为______. |
|