当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,在平面直角坐标系xoy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k,所得抛物线与x轴交于A、B两点(点A在点B的...
题目
题型:不详难度:来源:
如图,在平面直角坐标系xoy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k,所得抛物线与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,顶点为D.
(1)求h、k的值;
(2)判断△ACD的形状,并说明理由;
(3)在线段AC上是否存在点M,使△AOM与△ABC相似?若存在,求出点M的坐标;若不存在,说明理由.
答案
(1)∵y=x2的顶点坐标为(0,0),
∴y=(x-h)2+k的顶点坐标D(-1,-4),
∴h=-1,k=-4 (3分)

(2)由(1)得y=(x+1)2-4
当y=0时,
(x+1)2-4=0
x1=-3,x2=1
∴A(-3,0),B(1,0)(1分)
当x=0时,y=(x+1)2-4=(0+1)2-4=-3
∴C点坐标为(0,-3)
又∵顶点坐标D(-1,-4)(1分)
作出抛物线的对称轴x=-1交x轴于点E
作DF⊥y轴于点F
在Rt△AED中,AD2=22+42=20
在Rt△AOC中,AC2=32+32=18
在Rt△CFD中,CD2=12+12=2
∵AC2+CD2=AD2
∴△ACD是直角三角形;

(3)存在.由(2)知,OA=3,OC=3,则△AOC为等腰直角三角形,∠BAC=45°;
连接OM,过M点作MG⊥AB于点G,
AC=


18
=3


2

①若△AOM△ABC,则
AO
AB
=
AM
AC

3
4
=
AM
3


2
,AM=
3×3


2
4
=
9


2
4

∵MG⊥AB
∴AG2+MG2=AM2
AG=MG=


(
9


2
4
)2
2
=


81
16
=
9
4

OG=AO-AG=3-
9
4
=
3
4

∵M点在第三象限
∴M(-
3
4
,-
9
4
);
②若△AOM△ACB,则
AO
AC
=
AM
AB

3
3


2
=
AM
4
AM=
3×4
3


2
=2


2

∴AG=MG=


AM2
2
=


(2


2
)2
2
=2

OG=AO-AG=3-2=1
∵M点在第三象限
∴M(-1,-2).
综上①、②所述,存在点M使△AOM与△ABC相似,且这样的点有两个,其坐标分别为(-
3
4
,-
9
4
),(-1,-2).
核心考点
试题【如图,在平面直角坐标系xoy中,抛物线y=x2向左平移1个单位,再向下平移4个单位,得到抛物线y=(x-h)2+k,所得抛物线与x轴交于A、B两点(点A在点B的】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图①,Rt△ABC中,∠B=90°,∠CAB=30度.它的顶点A的坐标为(10,0),顶点B的坐标为(5,5


3
)
,AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.
(1)求∠BAO的度数.
(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图②),求点P的运动速度.
(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.
(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.
题型:不详难度:| 查看答案
某商场将进价为1800元的电冰箱以每台2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降价50元,平均每天就能多售出4台.
(1)设每台冰箱降价x元,商场每天销售这种冰箱的利润为y元,求y与x之间的函数关系式(不要求写自变量的取值范围).
(2)商场想在这种冰箱的销售中每天盈利8000元,同时又要使顾客得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少元?
题型:不详难度:| 查看答案
如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且12a+5c=0.
(1)求抛物线的解析式;
(2)如果点P由点A开始沿AB边以2cm/s的速度向点B移动,同时点Q由点B开始沿BC边以1cm/s的速度向点C移动.
①移动开始后第t秒时,设S=PQ2(cm2),试写出S与t之间的函数关系式,并写出t的取值范围;
②当S取得最小值时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
题型:不详难度:| 查看答案
已知抛物线y=ax2-2ax+c-1的顶点在直线y=-
8
3
x+8
上,与x轴相交于B(α,0)、C(β,0)两点,其中α<β,且α22=10.
(1)求这个抛物线的解析式;
(2)设这个抛物线与y轴的交点为P,H是线段BC上的一个动点,过H作HKPB,交PC于K,连接PH,记线段BH的长为t,△PHK的面积为S,试将S表示成t的函数;
(3)求S的最大值,以及S取最大值时过H、K两点的直线的解析式.
题型:不详难度:| 查看答案
把8米长的钢筋,焊成一个如图所示的框架,使其下部为矩形,上部为半圆形.请你写出钢筋所焊成框架的面积y(平方米)与半圆的半径x(米)之间的函数关系式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.