当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直...
题目
题型:不详难度:来源:
如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线lBC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直角梯形ABCD被直线l扫过的面积(图中阴影部分)为S,S关于t的函数图象如图②所示,OM为线段,MN为抛物线的一部分,NQ为射线,N点横坐标为4.

信息读取
(1)梯形上底的长AB=______;
(2)直角梯形ABCD的面积=______;
图象理解
(3)写出图②中射线NQ表示的实际意义;
(4)当2<t<4时,求S关于t的函数关系式;
问题解决
(5)当t为何值时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.
答案
由题意得:
(1)AB=2.

(2)S梯形ABCD=12.

(3)当平移距离BE大于等于4时,直角梯形ABCD被直线l扫过的面积恒为12.

(4)当2<t<4时,如图所示,
直角梯形ABCD被直线l扫过的面积S=S直角梯形ABCD-SRt△DOF
=12-
1
2
(4-t)×2(4-t)=-t2+8t-4.

(5)①当0<t<2时,有4t:(12-4t)=1:3,解得t=
3
4

②当2<t<4时,有(-t2+8t-4):[12-(-t2+8t-4)]=3:1,
即t2-8t+13=0,
解得t=4-


3
,t=4+


3
(舍去).
答:当t=
3
4
或t=4-


3
时,直线l将直角梯形ABCD分成的两部分面积之比为1:3.
核心考点
试题【如图①所示,在直角梯形ABCD中,∠BAD=90°,E是直线AB上一点,过E作直线l∥BC,交直线CD于点F.将直线l向右平移,设平移距离BE为t(t≥0),直】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线y=x2-4x+3与x轴交于两点A、B(A在B左侧),与y轴交于点C.
(1)对于任意实数m,点M(m,-3)是否在该抛物线上?请说明理由;
(2)求∠ABC的度数;
(3)若点P在抛物线上,且使得△PBC是以BC为直角边的直角三角形,试求出点P的坐标.
题型:不详难度:| 查看答案
抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-2,-1),与x轴有两个交点且交点间的距离是2,则这个抛物线的解析式为y=______.
题型:不详难度:| 查看答案
小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
输入12345
输出25101726
如图,经过原点的抛物线y=-x2+2mx与x轴的另一个交点为A.点P在一次函数y=2x-2m的图象上,PH⊥x轴于H,直线AP交y轴于点C,点P的横坐标为1.(点C不与点O重合)
(1)如图1,当m=-1时,求点P的坐标.
(2)如图2,当0<m<
1
2
时,问m为何值时
CP
AP
=2

(3)是否存在m,使
CP
AP
=2
?若存在,求出所有满足要求的m的值,并定出相对应的点P坐标;若不存在,请说明理由.
如图,已知抛物线y=ax2-2ax+c与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.点E为线段BC上的动点(点E不与点B,C重合),以E为顶点作∠OEF=45°,射线ET交线段OB于点F.
(1)求出此抛物线函数表达式,并直接写出直线BC的解析式;
(2)求证:∠BEF=∠COE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)点P为抛物线的对称轴与直线BC的交点,点M在x轴上,点N在抛物线上,是否存在以点A、M、N、P为顶点的平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.