当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,四边形ABCD是平行四边形,AB=3,AD=5,高DE=2,建立如图所示的平面直角坐标系,其中点A与坐标原点重合,CB的延长线与y轴交于点F,且F(0,-...
题目
题型:不详难度:来源:
如图,四边形ABCD是平行四边形,AB=3,AD=


5
,高DE=2,建立如图所示的平面直角坐标系,其中点A与坐标原点重合,CB的延长线与y轴交于点F,且F(0,-6).
(1)求点D的坐标;
(2)求经过点B、D、F的抛物线的解析式;
(3)判断平行四边形ABCD的对角线交点G是否在(2)中的抛物线上,并说明理由.
答案
(1)Rt△ADE中,AD=


5
,DE=2,由勾股定理得AE=1;
∴D(1,2).(1分)

(2)由D(1,2),B(3,0),F(0,-6)设所求抛物线的解析式为y=ax2+bx+c;





a+b+c=0
9a+3b+c=0
c=-6
,(5分)
解之得





a=-2
b=8
c=-6
;(6分)
∴所求抛物线的解析式为y=-2x2+8x-6.(7分)

(3)不在.(8分)
∵四边形ABCD是平行四边形,
∴G为线段BD的中点;
由于B(3,0),D(1,2),
故G(2,1);
将x=2,y=1代入解析式,左右两边不相等.
所以点G不在抛物线的图象上.(10分)
核心考点
试题【如图,四边形ABCD是平行四边形,AB=3,AD=5,高DE=2,建立如图所示的平面直角坐标系,其中点A与坐标原点重合,CB的延长线与y轴交于点F,且F(0,-】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
题型:难度:| 查看答案
某市举行钓鱼比赛,如图,选手甲钓到了一条大鱼,鱼竿被拉弯近似可看作以A为最高点的一条抛物线,鱼线AB长6m,鱼隐约在水面了,估计鱼离鱼竿支点有8m,此时鱼竿鱼线呈一个平面,且与水平面夹脚α恰好为60°,以鱼竿支点为原点,则鱼竿所在抛物线的解析式为______.
题型:不详难度:| 查看答案
已知直线y=-x+4分别交x轴、y轴于点A、C,过A、C两点的抛物线y=ax2-2ax+c交x轴于另一点B.
(1)求该抛物线的解析式;
(2)若动点Q从点B出发,以每秒2个单位长度沿线段BA方向运动,同时动直线l从x轴出发,以每秒1个单位长度沿y轴方向平行移动,直线l交AC与D,交BC于E,当点Q运动到点A时,两者都停止运动.设运动时间为t秒,△QED的面积为S.
①求S与t的函数关系式:并探究:当t为何值时,S有最大值为多少?
②在点Q及直线l的运动过程中,是否存在△QED为直角三角形?若存在,请求t的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知△OAB的顶点A(-6,0),B(0,2),O是坐标原点,将△OAB绕点O按顺时针旋转90°,得到△ODC.
(1)写出C,D两点的坐标;
(2)求过A,D,C三点的抛物线的解析式,并求此抛物线顶点E的坐标;
(3)证明AB⊥BE.
题型:不详难度:| 查看答案
如图,在正方形ABCD中,E是边BC上的一点.
(1)若线段BE的长度比正方形ABCD的边长少2cm,且△ABE的面积为4cm2,试求这个正方形ABCD的面积;
(2)若正方形ABCD的面积为8cm2,E是边BC上的一个动点,设线段BE的长为xcm,△ABE的面积为ycm2,试求y与x之间的函数关系式和函数的定义域;
(3)当x取何值时,第(2)小题中所求函数的函数值为2?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.