当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,已知抛物线y=ax2+b经过点A(4,4)和点B(0,-4).C是x轴上的一个动点.(1)求抛物线的解析式;(2)若点C在以AB为直径的圆上,求点C的坐标...
题目
题型:不详难度:来源:
如图,已知抛物线y=ax2+b经过点A(4,4)和点B(0,-4).C是x轴上的一个动点.
(1)求抛物线的解析式;
(2)若点C在以AB为直径的圆上,求点C的坐标;
(3)将点A绕C点逆时针旋转90°得到点D,当点D在抛物线上时,求出所有满足条件的点C的坐标.
答案
(1)∵抛物线y=ax2+b的图象经过点A(4,4)和点B(0,-4),





16a+b=4
b=-4
,解得:





a=
1
2
b=-4

∴抛物线的解析式为:y=
1
2
x2-4
;…(3分)

(2)过点A作AE⊥x轴于E,连接AB交x轴于点M,
OB=AE=4,∠MOB=∠AEM=90°,∠OMB=∠AME,
∴在△OMB与△EMA中,





OB=AE
∠MOB=∠AEM
∠OMB=∠AME

∴△OMB≌△EMA,
∴MB=MA,OM=ME=
1
2
OE=2

∴以M为圆心,MB为半径的⊙M,即为以AB为直径的圆.
由勾股定理得MB=


OM2+OB2
=


22+42
=2


5

∴点C的坐标为(2-2


5
,0)
(2+2


5
,0)


(3)如图2,当点C在点(4,0)的右侧时,
作AE⊥x轴于E,DF⊥x轴于F,
∵△ACD为等腰直角三角形,
∴AC=DC,∠ACD=90°,即∠ACF+∠DCF=90°,
∵∠FDC+∠DCF=90°,
∴∠ACF=∠FDC,
又∵∠DFC=∠AEC=90°,
在△DFC与△CEA中,





∠ACF=∠FDC
AC=DC
∠DFC=∠AEC

∴△DFC≌△CEA,
∴EC=DF,FC=AE,
∵A(4,4),
∴AE=OE=4,
∴FC=OE,即OF+EF=CE+EF,
∴OF=CE,
∴OF=DF,
当点C与点(4,0)的重合时,点D与原点重合;
当点C在点(4,0)的左侧时,同理可得OF=DF;
∴综上所述,点D在直线y=-x的图象上.
设点C的坐标为(m,0),
则点D的坐标为(m-4,4-m),(13分)
又∵点D在抛物线y=
1
2
x2-4
的图象上,
4-m=
1
2
(m-4)2-4

解得:m1=0,m2=6,
∴当点C的坐标为(6,0)或(0,0)时,
点D落在抛物线y=
1
2
x2-4
的图象上.
核心考点
试题【如图,已知抛物线y=ax2+b经过点A(4,4)和点B(0,-4).C是x轴上的一个动点.(1)求抛物线的解析式;(2)若点C在以AB为直径的圆上,求点C的坐标】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线y=
1
2
x2-
3
2
mx-2m
交x轴于A(x1,0)、B(x2,0),交y轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.
题型:不详难度:| 查看答案
某大众汽车经销商在销售某款汽车时,以高出进价20%标价.已知按标价的九折销售这款汽车9辆与将标价直降0.2万元销售4辆获利相同.
(1)求该款汽车的进价和标价分别是多少万元?
(2)若该款汽车的进价不变,按(1)中所求的标价出售,该店平均每月可售出这款汽车20辆;若每辆汽车每降价0.1万元,则每月可多售出2辆.求该款汽车降价多少万元出售每月获利最大?最大利润是多少?
题型:不详难度:| 查看答案
如图,从10米的窗口A用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直),如果抛物线的最高点M距离1米,离地面
40
3
米,试求水流落在点B距墙的距离OB.
题型:不详难度:| 查看答案
如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?
题型:不详难度:| 查看答案
已知抛物线y=-
1
4
x2+bx+c
与x轴交于A、B,与y轴交于点C,连结AC、BC,D是线段OB上一动点,以CD为一边向右侧作正方形CDEF,连结BF.若S△OBC=8,AC=BC
(1)求抛物线的解析式;
(2)求证:BF⊥AB;
(3)求∠FBE;
(4)当D点沿x轴正方向移动到点B时,点E也随着运动,则点E所走过的路线长是______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.