当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知二次函数的顶点C的横坐标为1,一次函数y=kx+2的图象与二次函数的图象交于A、B两点,且A点在y轴上,以C为圆心,CA为半径的⊙C与x轴相切,(1)求二次...
题目
题型:不详难度:来源:
已知二次函数的顶点C的横坐标为1,一次函数y=kx+2的图象与二次函数的图象交于A、B两点,且A点在y轴上,以C为圆心,CA为半径的⊙C与x轴相切,
(1)求二次函数的解析式;
(2)若B点的横坐标为3,过抛物线顶点且平行于x轴的直线为l,判断以AB为直径的圆与直线l的位置关系;
(3)在满足(2)的条件下,把二次函数的图象向右平移7个单位,向下平移t个单位(t>2)的图象与x轴交于E、F两点,当t为何值时,过B、E、F三点的圆的面积最小?
答案
(1)∵一次函数y=kx+2的图象与二次函数的图象交于y轴的A点,
∴A(0,2);
∵以CA为半径的⊙C与x轴相切,
∴点C在x轴上方,可设C(1,y),则有:
y2=(1-0)2+(y-2)2,解得 y=
5
4

即:顶点C(1,
5
4
);
设二次函数的解析式为:y=a(x-1)2+
5
4
,代入A(0,2),有:
a(0-1)2+
5
4
=2,解得 a=
3
4

∴二次函数的解析式:y=
3
4
(x-1)2+
5
4
=
3
4
x2-
3
2
x+2.

(2)当x=3时,y=
3
4
(x-1)2+
5
4
=
3
4
×4+
5
4
=
17
4
,即 B(3,
17
4
);
由(1)知,A(0,2),所以 AB的中点(
3
2
25
8
),AB=


(3-0)2+(
17
4
-2)2
=
15
4

过点C且平行于x轴的直线l:y=
5
4
,所以以AB为直径的圆心到直线l的距离为:
25
8
-
5
4
=
15
8
=
1
2
AB;
因此以AB为直径的圆与直线l相切.

(3)二次函数平移后的解析式为y=
3
4
(x-8)2+
5
4
-t,
令y=0,即
3
4
(x-8)2+
5
4
-t=0,解得:x=8±


3
3


4t-5

假设E(8-


3
3


4t-5
,0)、F(8+


3
3


4t-5
,0),EF的中垂线为x=8;
过B、E、F三点的圆心在x=8上,若过B、E、F三点的圆的面积最小,只需点B到直线x=8的距离最小,即最小值为5;
过B作直线x=8的垂线,垂足P即为圆心,半径r=5;
则PE=5,EF=
2


3
3


4t-5
,ES=
1
2
EF=


3
3


4t-5

由PS2+ES2=PE2,得:(
17
4
2+
1
3
(4t-5)=52
解得:t=
413
64

即:当t=
413
64
时,过B、E、F三点的圆的面积最小.
核心考点
试题【已知二次函数的顶点C的横坐标为1,一次函数y=kx+2的图象与二次函数的图象交于A、B两点,且A点在y轴上,以C为圆心,CA为半径的⊙C与x轴相切,(1)求二次】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
“假日旅乐园”中一种新型水上滑梯如图,其中线段PA表示距离水面(x轴)高度为5m的平台(点P在y轴上).滑道AB可以看作反比例函数图象的一部分,滑道BCD可以看作是二次函数图象的一部分,两滑道的连接点B为抛物线BCD的顶点,且点B到水面的距离BE=2m,点B到y轴的距离是5m.当小明从上而下滑到点C时,与水面的距离CG=
3
2
m,与点B的水平距离CF=2m.
(1)求反比例函数的解析式及其自变量的取值范围.
(2)求二次函数的解析式及其自变量的取值范围.
(3)小明从点B滑水面上点D处时,试求他所滑过的水平距离d.
题型:不详难度:| 查看答案
某地计划开凿一条单向行驶(从正中通过)的隧道,其截面是抛物线拱形ACB,而且能通过最宽3米,最高3.5米的厢式货车.按规定,机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5米.为设计这条能使上述厢式货车恰好安全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,建立如图所示的直角坐标系,求抛物线拱形的表达式、隧道的跨度AB和拱高OC.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
题型:不详难度:| 查看答案
在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),
C(2,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.
求S关于m的函数关系式,并求出S的最大值.
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
题型:不详难度:| 查看答案
如图,一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下表.那么s与t之间的函数关系式是s=______.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
时间t/s1234
距离s/m281832