当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知函数y1=ax2+bx+c(a≠0)和y2=mx+n的图象交于(-2,-5)点和(1,4)点,并且y1=ax2+bx+c的图象与y轴交于点(0,3).(1)...
题目
题型:不详难度:来源:
已知函数y1=ax2+bx+c(a≠0)和y2=mx+n的图象交于(-2,-5)点和(1,4)点,并且y1=ax2+bx+c的图象与y轴交于点(0,3).
(1)求函数y1和y2的解析式,并画出函数示意图;
(2)x为何值时,①y1>y2;②y1=y2;③y1<y2
答案
(1)把(-2,-5)、(1,4)、(0,3)代入y1=ax2+bx+c(a≠0)得





4a-2b+c=-5
a+b+c=4
c=3

解得





a=-1
b=2
c=3

所以y1=-x2+2x+3,
把(-2,-5)、(1,4)代入y2=mx+n得





-2m+n=-5
m+n=4

解得





m=3
n=1

所以y2=3x+1;如图

(2)①当-2<x<1时,y1>y2
②当x=-2或x=1时,y1=y2
③当x<-2或x>1时y1<y2
核心考点
试题【已知函数y1=ax2+bx+c(a≠0)和y2=mx+n的图象交于(-2,-5)点和(1,4)点,并且y1=ax2+bx+c的图象与y轴交于点(0,3).(1)】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图①,抛物线y=ax2+bx+c与x轴相交于O、A两点直线y=-x+3与y轴交于B点,与该抛物线交于A,D两点,已知点D横坐标为-1.(1)求这条抛物线的解析式;
(2)如图①,在线段OA上有一动点H(不与O、A重合),过H作x轴的垂线分别交AB于P点,交抛物线于Q点,若x轴把△POQ分成两部分的面积之比为1:2,请求出H点的坐标;
(3)如图②,在抛物线上是否存在点C,使△ABC为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
在学校田径运动会上,九年级的一名高个子男生抛实心球,已知实心球所经过的路线是某个二次函数图象的一部分,如图所示,如果这个男生的抛球处A点坐标为(0,2),实心球在空中线路的最高点B点的坐标是(6,5).
(1)求这个二次函数解析式;
(2)若抛出13.5米或大于13.5米远为“好成绩”,问该男生在这次抛掷中,能取得“好成绩”吗?试通过计算说明.(


15
≈3.873)
题型:不详难度:| 查看答案
已知:在平面直角坐标系中,抛物线y=-
1
4
x2+bx+3
交x轴于A、B两点,交y轴于点C,且对称轴为x=-2,点P(0,t)是y轴上的一个动点.

(1)求抛物线的解析式及顶点D的坐标.
(2)如图1,当0≤t≤4时,设△PAD的面积为S,求出S与t之间的函数关系式;S是否有最小值?如果有,求出S的最小值和此时t的值.
(3)如图2,当点P运动到使∠PDA=90°时,Rt△ADP与Rt△AOC是否相似?若相似,求出点P的坐标;若不相似,说明理由.
题型:不详难度:| 查看答案
题型:难度:| 查看答案
已知抛物线y=ax2+bx+c(a≠0)经过A(-2,-3)、B(3,2)两点,且与x轴相交于M、N两点,当以线段MN为直径的圆的面积最小时,求M、N两点的坐标和四边形AMBN的面积.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.