当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知A,A是抛物线y=12x2上两点,A1B1,A3B3分别垂直于x轴,垂足分别为B1,B3,点C是线段A1A3的中点,过点C作CB2垂直于x轴,垂足为B2,C...
题目
题型:不详难度:来源:
已知A,A是抛物线y=
1
2
x2上两点,A1B1,A3B3分别垂直于x轴,垂足分别为B1,B3,点C是线段A1A3的中点,过点C作CB2垂直于x轴,垂足为B2,CB2交抛物线于点A2

(1)如图1,已知A1,A3两点的横坐标依次为1,3,求线段CA2的长;
(2)如图2,若将抛物线y=
1
2
x2改为抛物线y=
1
2
x2-x+1,且A1,A2,A3三点的横坐标为连续的整数,其他条件不变,求线段CA2的长;
(3)若将抛物线y=
1
2
x2改为抛物线y=ax2+bx+c(a>0),A1,A2,A3三点的横坐标为连续整数,其他条件不变,试猜想线段CA2的长(用a,b,c表示,并直接写出答案).
答案
(1)∵A1,A3的横坐标依次为1,3,
∴A1B1=
1
2
×12=
1
2
,A3B3=
1
2
×32=
9
2

由已知可得A1B1CB2A3B3
又∵C为A1A3的中点,
∴B2为B1B3的中点,
∴B2点的横坐标为2,
∴A2B2=
1
2
×22=2,
而CB2=
1
2
(A1B1+A3B3
=
1
2
1
2
+
9
2
)+
5
2

∴CA2=CB2-A2B2=
5
2
-2
=
1
2


(2)设A1,A2,A3三点的横坐标依次为n-1,n,n+1,
则A1B1=
1
2
(n-1)2-(n-1)+1,A2B2=
1
2
n2-n+1,
A3B3=
1
2
(n+1)2-(n+1)+1,
由已知可得A1B1A3B3AB2
∴CB2=
1
2
(A1B1+A3B3
=
1
2
[
1
2
(n-1)2-(n-1)+1+
1
2
(n+1)2-(n+1)+1]
=
1
2
n2-n+
3
2

∴CA2=CB2-A2B2=
1
2
n2-n+
3
2
-(
1
2
n2-n+1)=
1
2


(3)当a>0时,CA2=a.
核心考点
试题【已知A,A是抛物线y=12x2上两点,A1B1,A3B3分别垂直于x轴,垂足分别为B1,B3,点C是线段A1A3的中点,过点C作CB2垂直于x轴,垂足为B2,C】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,已知二次函数y=ax2+bx+c的图象的形状与抛物线y=-
1
2
x2+1的形状相同,且经过A(2,0)、B(0,-6)两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA、BC,求△ABC的面积.
题型:不详难度:| 查看答案
如图,直线y=x+3与坐标轴分别交于A,B两点,抛物线y=ax2+bx-3a经过点A,B,顶点为C,连接CB并延长交x轴于点E,点D与点B关于抛物线的对称轴MN对称.
(1)求抛物线的解析式及顶点C的坐标;
(2)求证:四边形ABCD是直角梯形.
题型:不详难度:| 查看答案
如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠,使点B落在D处,AD交OC于E.
(1)求OE的长;
(2)求过O,D,C三点抛物线的解析式;
(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒)为何值时,直线PF把△FAC分成面积之比为1:3的两部分.
题型:不详难度:| 查看答案
养鸡专业户小李要建一个露天养鸡场,鸡场的一边靠墙(墙足够长),其他边用竹篱笆围成,竹篱笆的长为40m,读九年级的儿子小军为他设计了如下方案:如图,把养鸡场围成等腰梯形ABCD,且∠ABC=120°.
(1)当AB为何值时,所围的面积是132


3
m2

(2)当AB为何值时,所围的面积最大?
题型:不详难度:| 查看答案
如图,已知直线y=3x-3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).
(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.