当前位置:初中试题 > 数学试题 > 二次函数的应用 > 在一大片空地上有一堵墙(线段AB),现有铁栏杆40m,准备充分利用这堵墙建造一个封闭的矩形花圃.(1)如果墙足够长,那么应如何设计可使矩形花圃的面积最大?(2)...
题目
题型:不详难度:来源:
在一大片空地上有一堵墙(线段AB),现有铁栏杆40m,准备充分利用这堵墙建造一个封闭的矩形花圃.
(1)如果墙足够长,那么应如何设计可使矩形花圃的面积最大?
(2)如果墙AB=8m,那么又要如何设计可使矩形花圃的面积最大?
答案
(1)设DE=x,那么面积S=x(20-
x
2

=-
x2
2
+20x=-
1
2
(x-20)2+200
∴当DE=20m时,矩形的面积最大是200m2



(2)讨论①设DE=x,那么面积S=x(20-
x
2
)(0<x≤8)
=-
1
2
(x-20)2+200
∴当DE=8m时,矩形的面积最大是128m2
②延长AB至点F,作如图所示的矩形花圃
设BF=x,那么AF=x+8,AD=16-x
那么矩形的面积S=(x+8)(16-x)
=-x2+8x+128
=-(x-4)2+144
∴当x=4时,面积S的最大值是144.
∴按第二种方法围建的矩形花圃面积最大是144m2
核心考点
试题【在一大片空地上有一堵墙(线段AB),现有铁栏杆40m,准备充分利用这堵墙建造一个封闭的矩形花圃.(1)如果墙足够长,那么应如何设计可使矩形花圃的面积最大?(2)】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
服装店销售一种进价为50元的衬衣,生产厂家规定售价为60元-170元,当定价为60元时,平均每周可卖出70件,定价每涨价10元,每周少买5件,现将这种衬衣售价定为x元(规定x是10的整数倍),这种衬衣每周销售件数为y件,每周卖这种衬衣所得的利润为w元,
(1)请直接写出y与x的函数关系(不必写x的取值范围)
(2)请求出w与x的函数关系(不必写x的取值范围)
(3)要想每周取得2500元利润,并且让顾客得到实惠,应将售价定为多少元?
题型:不详难度:| 查看答案
王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.

(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;
(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;
(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?
(学习收益总量=解题的学习收益量+回顾反思的学习收益量)
题型:不详难度:| 查看答案
如图,一个中学生推铅球,铅球在点A处出手,在点B处落地,它的运行路线是一条抛物线,在平面直角坐标系中,这条抛物线的解析式为:y=-
1
12
x2+
2
3
x+
5
3

(1)请用配方法把y=-
1
12
x2+
2
3
x+
5
3
化成y=a(x-h)2+k的形式.
(2)求出铅球在运行过程中到达最高点时离地面的距离和这个学生推铅球的成绩.(单位:米)
题型:不详难度:| 查看答案
如图抛物线y=-


3
3
x2-
2
3


3
x+


3
,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
(1)在Rt△ABC中,BC=3,AB=4,则AC=______.
(2)如图,在Rt△ABC中,∠ABC=90°,BC=3cm,AB=4cm.若点P从点B出发,以2cm/s的速度在BC所在的直线上运动.设点P的运动时间为t,试求当t为何值时,△ACP是等腰三角形?
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.