当前位置:初中试题 > 数学试题 > 二次函数的应用 > 小胜和小阳用如图所示的两个转盘做游戏,游戏规则如下:分别转两个转盘,将x转盘转到的数字作为横坐标,将y转盘转到的数字作为纵坐标,组成一个点的坐标:(x,y).当...
题目
题型:不详难度:来源:
小胜和小阳用如图所示的两个转盘做游戏,游戏规则如下:分别转两个转盘,将x转盘转到的数字作为横坐标,将y转盘转到的数字作为纵坐标,组成一个点的坐标:(x,y).当这个点在一次函数y=kx的图象上时,小胜得奖品;当这个点在二次函数y=ax2的图象上时,小阳得奖品;其他情况无得奖品.主持人在游戏开始之前分别转了这两个转盘,x盘转到数字3,y盘转到数字9,它们组成点刚好都在这两个函数的图象上.
(1)求k和a的值;
(2)主持人想用列表法求出小胜得奖品和小阳得奖品的概率.请你补全表中他未完成的部分,并写出两人得奖品的概率:P(小胜得奖品)=______,P(小阳得奖品)=______;
答案
X
Y
123
6
8
9(3,9)
(1)把x=3,y=9分别代入:一次函数y=kx和二次函数y=ax2
解得:k=3,a=1.
故答案为k=3,a=1.

(2)∵一次函数y=3x,
∴满足条件的分别是(2,6),(3,9),
核心考点
试题【小胜和小阳用如图所示的两个转盘做游戏,游戏规则如下:分别转两个转盘,将x转盘转到的数字作为横坐标,将y转盘转到的数字作为纵坐标,组成一个点的坐标:(x,y).当】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
X
Y
123
6(1,6)(2,6)(3,6)
8(1,8)(2,8)(3,8)
9(1,9),2,9)(3,9)
如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.
如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4),O(0,0),B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.
如图,已知抛物线y=ax2+bx+c的顶点为P(1,-2),且经过点A(-3,6),并与x轴交于点B和C.

(1)求这个二次函数的解析式,并求出点C坐标及∠ACB的大小;
(2)设D为线段OC上一点,满足∠DPC=∠BAC,求D的坐标;
(3)在x轴上,是否存在点M,使得以M为圆心的圆能与直线AC、直线PC及y轴都相切?如果存在,求出点M的坐标;若不存在,请说明理由.
已知:如图,点A在y轴上,⊙A与x轴交于B、C两点,与y轴交于点D(0,3)和点E(0,-1)
(1)求经过B、E、C三点的二次函数的解析式;
(2)若经过第一、二、三象限的一动直线切⊙A于点P(s,t),与x轴交于点M,连接PA并延长与⊙A交于点Q,设Q点的纵坐标为y,求y关于t的函数关系式,并观察图形写出自变量t的取值范围;
(3)在(2)的条件下,当y=0时,求切线PM的解析式,并借助函数图象,求出(1)中抛物线在切线PM下方的点的横坐标x的取值范围.
在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.