当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴...
题目
题型:不详难度:来源:
如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.

(1)求抛物线的解析式;
(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;
(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
答案

(1)由题知:





a+b+3=0
9a-3b+3=0

解得:





a=-1
b=-2

∴所求抛物线解析式为:
y=-x2-2x+3;

(2)∵抛物线解析式为:
y=-x2-2x+3,
∴其对称轴为x=
-2
2
=-1,
∴设P点坐标为(-1,a),当x=0时,y=3,
∴C(0,3),M(-1,0)
∴当CP=PM时,(-1)2+(3-a)2=a2,解得a=
5
3

∴P点坐标为:P1(-1,
5
3
);
∴当CM=PM时,(-1)2+32=a2,解得a=±


10

∴P点坐标为:P2(-1,


10
)或P3(-1,-


10
);
∴当CM=CP时,由勾股定理得:(-1)2+32=(-1)2+(3-a)2,解得a=6,
∴P点坐标为:P4(-1,6)
综上所述存在符合条件的点P,其坐标为P(-1,


10
)或P(-1,-


10

或P(-1,6)或P(-1,
5
3
);

(3)过点E作EF⊥x轴于点F,设E(a,-a2-2a+3)(-3<a<0)
∴EF=-a2-2a+3,BF=a+3,OF=-a
∴S四边形BOCE=
1
2
BF•EF+
1
2
(OC+EF)•OF
=
1
2
(a+3)•(-a2-2a+3)+
1
2
(-a2-2a+6)•(-a)
=-
3
2
a2-
9
2
a+
9
2

=-
3
2
(a+
3
2
)2
+
63
8

∴当a=-
3
2
时,S四边形BOCE最大,且最大值为
63
8

此时,点E坐标为(-
3
2
15
4
).
核心考点
试题【如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,抛物线y=x2+bx+c经过点(1,-4)和(-2,5),请解答下列问题:(1)求抛物线的解析式;
(2)若与x轴的两个交点为A、B,与y轴交于点C.在该抛物线上找一点D,使得△ABC与△ABD全等,求出D点的坐标.
题型:不详难度:| 查看答案
如图,已知经过原点的抛物线y=-2x2+4x与x轴的另一交点为A,现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P.
(1)求点A的坐标,并判断△PCA存在时它的形状(不要求说理);
(2)在x轴上是否存在两条相等的线段?若存在,请一一找出,并写出它们的长度(可用含m的式子表示);若不存在,请说明理由;
(3)设△CDP的面积为S,求S关于m的关系式.
题型:不详难度:| 查看答案
如图所示,某同学在探究二次函数图象时,作直线y=m平行于x轴,交二次函数y=x2的图象于A、B两点,作AC、BD分别垂直于x轴,发现四边形ABCD是正方形.
(1)求m的值及A、B两点的坐标;
(2)如图所示,将抛物线“y=x2”改为“y=x2-2x+2”,直线CD经过抛物线的顶点P与x轴平行,其它关系不变,求m的值及A、B两点的坐标.
(3)如图所示,将图中的改为“y=ax2+bx+c(a>0),其它关系不变,请直接写出m的值及A、B两点的坐标(用含有a、b、c的代数式表示)
[提示:抛物线y=ax2+bx+c的顶点坐标为(-
b
2a
4ac-b2
4a
),对称轴为x=-
b
2a
].
题型:不详难度:| 查看答案
如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(


3
,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处.
(1)若点P在一次函数y=2x-1的图象上,求点P的坐标;
(2)若点P在抛物线y=ax2图象上,并满足△PCB是等腰三角形,求该抛物线解析式;
(3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值.
题型:不详难度:| 查看答案
2011年长江中下游地区发生了特大旱情.为抗旱保丰收,某地政府制定了农户投资购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备投资的金额与政府补的额度存在下表所示的函数对应关系.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
型 号
金 额
投资金额x(万元)
Ⅰ型设备Ⅱ型设备
x5x24
补贴金额y(万元)y1=kx(k≠0)2y2=ax2+bx(a≠0)2.43.2