当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴交于点C,点D(-2,-3)在抛物线上.(1)求抛物线的解析式;(...
题目
题型:不详难度:来源:
已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴交于点C,点D(-2,-3)在抛物线上.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)点G抛物线上的动点,在x轴上是否存在点E,使B、D、E、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的E点坐标;如果不存在,请说明理由.
答案
(1)将A(-3,0),D(-2,-3)代入y=x2+bx+c,得:





9-3b+c=0
4-2b+c=-3

解得:





b=2
c=-3

∴抛物线的解析式为:y=x2+2x-3.

(2)由:y=x2+2x-3得:
对称轴为:x=-
2
2×1
=-1

令y=0,则:x2+2x-3=0,
∴x1=-3,x2=1,
∴点B坐标为(1,0),
而点A与点B关于x=-1对称,
∴连接BD与对称轴的交点即为所求的P点.
过点D作DF⊥x轴于点F,则:DF=3,BF=1-(-2)=3,
在Rt△BDF中,BD=


32+32
=3


2

∵PA=PB,
∴PA+PD=PB+PD=BD=3


2

即PA+PD的最小值为3


2


(3)存在符合条件的点E,
①在y=x2+2x-3中,令x=0,则有:y=-3,故点C坐标为(0,-3),
∴CDx轴,
∴在x轴上截取BE1=BE2=CD=2,得BCDE1和BDCE2
此时:点C与点G重合,E1(-1,0),E2(3,0).
②∵BF=DF=3,∠DFB=90°,
∴∠FBD=45°,
当G3E3BD且相等时,有G3E3DB,作G3N⊥x轴于点N,
∵∠G3E3B=∠FBD=45°,∠G3NE3=90°,G3E3=BD=3


2

∴G3N=E3N=3;
将y=3代入y=x2+2x-3
得:x=-1±


7

∴E3的坐标为:(-1+


7
-3,0)

(-4+


7
,0)

同理可得:E4(-4-


7
,0)

综上所述:存在这样的点E,所有满足条件的E点坐标为:
E1(-1,0),E2(3,0),
E3(-4+


7
,0)
E4(-4-


7
,0)
核心考点
试题【已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(-3,0),与y轴交于点C,点D(-2,-3)在抛物线上.(1)求抛物线的解析式;(】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?
题型:不详难度:| 查看答案
如图,△ABC的高AD为3,BC为4,直线EFBC,交线段AB于E,交线段AC于F,交AD于G,以EF为斜边作等腰直角三角形PEF(点P与点A在直线EF的异侧),设EF为x,△PEF与四边形BCEF重合部分的面积为y.
(1)求线段AG(用x表示);
(2)求y与x的函数关系式,并求x的取值范围.
题型:不详难度:| 查看答案
如图,二次函数y=-mx2+4m的顶点坐标为(0,2),矩形ABCD的顶点B、C在x轴上,A、D在抛物线上,矩形ABCD在抛物线与x轴所围成的图形内.
(1)求二次函数的解析式;
(2)设点A的坐标为(x,y),试求矩形ABCD的周长P关于自变量x的函数解析式,并求出自变量x的取值范围;
(3)是否存在这样的矩形ABCD,使它的周长为9?试证明你的结论.
(4)求出当x为何值时P有最大值?
题型:不详难度:| 查看答案
某公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件.为了获得更好的效益,公司准备那出一定的资金做广告.根据经验,每年投入广告费为x(万元)时,产品的年销售量将是原销售量的y倍,且y=-
x2
10
+
7
10
x+
7
10
.如果把利润看作是销售额减去成本费和广告费,试求当年利润为16万元时,广告费x为多少万元?
题型:不详难度:| 查看答案
已知二次函数的图象经过点(0,-3),且顶点坐标为(-1,-4).
(1)求该二次函数的解析式;
(2)设该二次函数的图象与x轴的交点为A、B,与y轴的交点为C,求△ABC的面积.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.