当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知抛物线y=-12x2+mx+n与x轴交于不同的两点A(x1,0),B(x2,0),点A在点B的左边,抛物线与y轴交于点C,若A,B两点位于y轴异侧,且tan...
题目
题型:不详难度:来源:
已知抛物线y=-
1
2
x2+mx+n
与x轴交于不同的两点A(x1,0),B(x2,0),点A在点B的左边,抛物线与y轴交于点C,若A,B两点位于y轴异侧,且tan∠CAO=tan∠BCO=
1
3
,求抛物线的解析式.
答案
∵图象与x轴有交点,∴令y=0,
∵图象与y轴有交点,∴令x=0,
∴y=n 即C点坐标为(0,n),
tan∠CAO=tan∠BCO=
1
3

OC
AO
=
OB
OC
=
1
3

∵∠ACB=90°,CO⊥x轴,
∴OC2=AO•OB,
∵A、B两点在y轴异侧,
∴OA=3n,OB=
1
3
n,
即n2=n,∵n≠0,∴n=1,∴OC=1,
∴AO=3,B0=
1
3

∴A点坐标为(-3,0),
同理解得B点坐标为(
1
3
,0),
设y=a(x+3)(x-
1
3

且它过点C(0,1),
代入后解得:a=-1,
所以:y=-x2-
8
3
x-1.
答:抛物线的解析式为:y=-x2-
8
3
x-1.
核心考点
试题【已知抛物线y=-12x2+mx+n与x轴交于不同的两点A(x1,0),B(x2,0),点A在点B的左边,抛物线与y轴交于点C,若A,B两点位于y轴异侧,且tan】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
下表给出了一个二次函数的一些取值情况:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x…024
y…3-13
已知二次函数y=-
1
4
x2+
3
2
x
的图象如图所示.

(1)求它的对称轴与x轴交点D的坐标;
(2)将该抛物线沿它的对称轴向上平移k个单位,设平移后的抛物线与x轴,y轴的交点分别为A、B、C三点,若∠ACB=90°,求此时抛物线的解析式;
(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.
(4)在(2)的条件下,平行于x轴的直线x=t(0<t<k)分别交AC、BC于E、F两点,试问在x轴上是否存在点P,使得△PEF是等腰直角三角形?若存在,请直接写P点的坐标;若不存在,请说明理由.
已知抛物线y=x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.
如图,P是抛物线y2=x2-6x+9对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x、抛物线y2交于点A、B.若△ABP是以点A或点B为直角顶点的等腰直角三角形,求满足条件的t的值,则t=______.
如图,直线l经过A(3,0),B(0,3)两点,且与二次函数y=x2+1的图象,在第一象限内相交于点C.求:
(1)△AOC的面积;
(2)二次函数图象的顶点与点A、B组成的三角形的面积.