当前位置:初中试题 > 数学试题 > 二次函数的应用 > 已知:0<a<b<c,实数x、y满足2x+2y=a+b+c,2xy=ac,且x<y.求证:0<x<a,b<y<c....
题目
题型:不详难度:来源:
已知:0<a<b<c,实数x、y满足2x+2y=a+b+c,2xy=ac,且x<y.求证:0<x<a,b<y<c.
答案
证明:∵2x+2y=a+b+c,2xy=ac,
∴x+y=
a+b+c
2
,xy=
ac
2

∴x,y可看作方程t2-
a+b+c
2
t+
ac
2
=0的两实根,
设函数S=t2-
1
2
(a+b+c)t+
1
2
ac,
①当t=0时,S=
1
2
ac>0;
②当t=a时,S=a2-
a+b+c
2
•a+
ac
2
=
1
2
a(a-b),
而0<a<b,
∴S=
1
2
a(a-b)<0;
③当t=b时,S=b2-
1
2
(a+b+c)b+
1
2
ac=
1
2
(b-a)(b-c),
∵0<a<b<c,
∴S=
1
2
(b-a)(b-c)<0,
④当t=c时,S=
1
2
c(c-b)>0,
可知函数S=t2-
1
2
(a+b+c)t+
1
2
ac的图象与t轴的两个交点分别在0,a和b,c之间,如图,
∴方程t2-
a+b+c
2
t+
ac
2
=0的两根分别在0,a之间的和b,c之间,
即0<x<a,b<y<c.
核心考点
试题【已知:0<a<b<c,实数x、y满足2x+2y=a+b+c,2xy=ac,且x<y.求证:0<x<a,b<y<c.】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,与y轴相交于点C.连接AC,BC,A(-3,0),C(0,


3
),且当x=-4和x=2时二次函数的函数值y相等.
(1)求抛物线的解析式;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动.
①当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
②抛物线的对称轴上是否存在点Q,使得以B、N、Q为顶点的三角形与△A0C相似?如果存在,请直接写出点Q的坐标;如果不存在,请说明理由.
③当运动时间为t秒时,连接MN,将△BMN沿MN翻折,得到△PMN.并记△PMN与△AOC的重叠部分的面积为S.求S与t的函数关系式.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,点O为原点,已知点A的坐标为(2,2),点B、C在y轴上,BC=8,AB=AC,直线AB与x轴相交于点D.
(1)求点C、D的坐标;
(2)求图象经过A、C、D三点的二次函数解析式.
题型:不详难度:| 查看答案
如图,直线y=


3
3
x+b
经过点B(-


3
,2),且与x轴交于点A.将抛物线y=
1
3
x2
沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.
(1)求∠BAO的度数;
(2)直线AB交抛物线y=
1
3
x2
的右侧于点D,问点B是AD中点吗?试说明理由;
(3)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F.当线段EFx轴时,求平移后的抛物线C对应的函数关系式.
题型:不详难度:| 查看答案
如图已知二次函数图象的顶点为原点,直线y=
1
2
x+4
的图象与该二次函数的图象交于A点(8,8),直线与x轴的交点为C,与y轴的交点为B.
(1)求这个二次函数的解析式与B点坐标;
(2)P为线段AB上的一个动点(点P与A,B不重合),过P作x轴的垂线与这个二次函数的图象交于D点,与x轴交于点E.设线段PD的长为h,点P的横坐标为t,求h与t之间的函数关系式,并写出自变量t的取值范围;
(3)在(2)的条件下,在线段AB上是否存在点P,使得以点P、D、B为顶点的三角形与△BOC相似?若存在,请求出P点的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知:函数y=-
1
4
x2+x+a的图象的最高点在x轴上.
(1)求a;
(2)如图所示,设二次函数y=-
1
4
x2+x+a图象与y轴的交点为A,顶点为B,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;
(3)在(2)中,若圆与x轴另一交点C关于直线PB的对称点为M,试探索点M是否在抛物线y=-
1
4
x2+x+a上?若在抛物线上,求出M点的坐标;若不在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.