当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图所示,矩形的窗户分成上、下两部分,用9米长的塑钢制作这个窗户的窗框(包括中间档),设窗宽x(米),则窗的面积y(平方米)用x表示的函数关系式为______;...
题目
题型:不详难度:来源:
如图所示,矩形的窗户分成上、下两部分,用9米长的塑钢制作这个窗户的窗框(包括中间档),设窗宽x(米),则窗的面积y(平方米)用x表示的函数关系式为______;要使制作的窗户面积最大,那么窗户的高是______米,窗户的最大面积是______平方米.
答案
∵设窗宽x(米),则高为
9-3x
2

∴y=
9-3x
2
x,即用x表示的函数关系式为y=-
3
2
x2+
9
2
x (0<x<3);
要使制作的窗户面积最大x=-
b
2a
=-
9
2
(-
3
2
)×2
=
3
2
,高为
9-3x
2
=
9-3×
9
2
2
=
9
4

窗户的最大面积是
4ac-b2
4a
=
-
81
4
-12
=
27
8
核心考点
试题【如图所示,矩形的窗户分成上、下两部分,用9米长的塑钢制作这个窗户的窗框(包括中间档),设窗宽x(米),则窗的面积y(平方米)用x表示的函数关系式为______;】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知,如图1,过点E(0,-1)作平行于x轴的直线l,抛物线y=
1
4
x2上的两点A、B的横坐标分别为-1和4,直线AB交y轴于点F,过点A、B分别作直线l的垂线,垂足分别为点C、D,连接CF、DF.
(1)求点A、B、F的坐标;
(2)求证:CF⊥DF;
(3)点P是抛物线y=
1
4
x2对称轴右侧图象上的一动点,过点P作PQ⊥PO交x轴于点Q,是否存在点P使得△OPQ与△CDF相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
问题情境
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
数学模型
设该矩形的长为x,周长为y,则y与x的函数关系式为y=2(x+
a
x
)(x>0)

探索研究
(1)我们可以借鉴学习函数的经验,先探索函数y=x+
1
x
(x>0)
的图象性质.
1填写下表,画出函数的图象:
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.
x
1
4
1
3
1
2
1234
y
如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=-
1
12
x2+
2
3
x+
5
3
.则他将铅球推出的距离是______m.
如图,顶点为A的抛物线y=a(x+2)2-4交x轴于点B(1,0),连接AB,过原点O作射线OMAB,过点A作ADx轴交OM于点D,点C为抛物线与x轴的另一个交点,连接CD.
(1)求抛物线的解析式(关系式);
(2)求点A,B所在的直线的解析式(关系式);
(3)若动点P从点O出发,以每秒1个单位长度的速度沿着射线OM运动,设点P运动的时间为t秒,问:当t为何值时,四边形ABOP分别为平行四边形?等腰梯形?
(4)若动点P从点O出发,以每秒1个单位长度的速度沿线段OD向点D运动,同时动点Q从点C出发,以每秒2个单位长度的速度沿线段CO向点O运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t秒,连接PQ.问:当t为何值时,四边形CDPQ的面积最小?并求此时PQ的长.
如图,半径为2的⊙C与x轴的正半轴交于点A,与y轴的正半轴交于点B,点C的坐标为(1,0).若抛物线y=-


3
3
x2+bx+c过A、B两点.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点P,使得∠PBO=∠POB?若存在,求出点P的坐标;若不存在说明理由;
(3)若点M是抛物线(在第一象限内的部分)上一点,△MAB的面积为S,求S的最大(小)值.